

The technical problem
• the high-level deterministic computer

• official definition

• entire lifecycle defined by a single frozen function

• lifecycle semantics defined at the programmer level

• existing approximations

• machine VM: inherently low-level

• JS, JVM, etc: transient, and not quite frozen

• Lisp, Smalltalk machines: no functional definition

• user experience: integrated OS/interpreter/DB

• when a deterministic computer hits an undecidable problem?

• kelvin versioning
• decreases by integers to absolute zero; Urbit is 5K

The human problem (1)
• the Internet as a client-server network has won

• (HTTP = ATDT) ⟹ (FB = AOL)

• the Internet as a peer-to-peer network has failed
• new wide-area protocols can no longer be introduced

• even SMTP survives only by inertia

• no one wants to self-host on a personal Linux server

• Linux is layer 7 of the Internet

• the Linux/Internet platform is unsalvageable as a P2P network

The human problem (2)
• the old platform is a fine substrate to layer over

• on the client side, the browser already did this

• there’s a plausible need for a new platform
• we don’t know that people don’t want personal servers

• we just know they don’t want personal Unix servers on the Internet

• the obstacle to the personal server is admin cost
• technical simplicity is a plausible therapy

• this “browser for the server side” is a clean slate
• since we’re layering over both the OS and the network

The one-function
computer
• the simplest network: a global broadcast ethernet

• routing is an optimization (content-centric networking)

• packets are facts; the event log is a list of facts heard

• the simplest computer: a packet transceiver

• two ways to define a one-function computer:
• lifecycle function: L(input history) → resulting state

• transition function: T(input event, state) → (output actions, new state)

• any practical L will converge to some T
• output in a lifecycle function is an optional hint

• a lifecycle function can define a boot sequence

Practical implementation
• event sourcing is popular these days

• good tools for low-latency reliable logs (Kafka)

• snapshot and append-only log is the normal DB design

• every packet is a transaction, finalized when complete

• non-packet I/O can be event-sourced (libuv)

• decidability is a heuristic problem
• interrupt a console; time out a packet

• the log is an existence proof of computability

• nondeterminism feeds back into the event stream

Let’s try it in Lisp

• it’s easy to define a lifecycle function in Lisp
• (defun lifecycle (log) ((car log) (cdr log)))

• the first event is the function, the rest of history is the argument

• of course we still have to write the function…

• now all we need is the one true perfect frozen Lisp
• a lifecycle function makes extreme demands on interpreter precision

• probably no “one-stage” interpreter can satisfy these demands

• two stages: axiomatic untyped VM, user-level typed compiler

• lambda puts high-level features in the axioms
• symbols, functions, variables, scopes, are all user-level features

The Urbit stack
• Nock: typeless, frozen interpreter

• defined in 200 words, on a (readable) T-shirt

• Hoon: pure, strict, typed functional language
• does not use category theory

• compiles its own compiler to Nock

• Arvo: nonpreemptive operating system
• written in Hoon

• defines a transition function T(event, state) -> (actions, new state)

• defines a referentially transparent global namespace

• interprets and sends untrusted, unreliable network packets

• can update everything except Nock over the wire

Nock ideals

• a “functional assembly language”
• a Lisp without high-level affordances

• symbols, variables, scope, syntax, etc

• no cyclic or infinite data structures
• acyclic strict data is much easier to persist and transport

• efficient execution strategy

• fits on a T-shirt

• obviously perfect and will never need to change

Nock concepts

• a value in Nock is a noun

• a noun is an atom or a cell
• an atom is an unsigned integer of any size

• a cell is an ordered pair of any two nouns

• cells are strict and acyclic and compare by value

• Nock is a function *[subject formula] → product
• the subject is the data; the formula is the function; the product is the result

• any error produces nontermination, bottom, ⊥

Nock spec (intrinsics)

Nock spec (instructions)

Decrement in Nock + Hoon

Nock optimization
• O(n) decrement is nifty, but not practical

• solution: a sufficiently smart interpreter
• just recognize any decrement formula, and execute it efficiently

• also add, multiply, and all other common intrinsics

• wait, we don’t have to recognize every decrement
• just the decrement in the standard library

• solution: hint-register and match important functions
• these jets are like software device drivers

• user code remains pure, but declares a semantic identity

• an interpreter which recognizes this identity can optimize it

Hoon ideals
• compiler compiles itself from source to Nock

• does not have to be frozen; anything above Nock must self-update

• pure, strict, higher-order typed functional language

• transformation to Nock is simple, like C to assembly

• requires no particular mathematical aptitude
• and does not use category theory

• encourages lower-order, more imperative style
• DSLs considered harmful

• still almost as expressive as Haskell

Hoon concepts
• Hoon is a typed macro assembler for Nock

• type inference and code generation combined are 1.500 lines of Hoon

• Computes [subject expression] → product
• “subject-oriented programming”

• the Hoon compiler is a parser and a generator
• the parser (vast) computes source → expression

• the generator (ut) computes [type expression] → [type formula]
• its input is the subject type (domain) and the expression

• its output is the product type (range) and the Nock formula

• Hoon infers only forward, without unification
• a (slightly) less intelligent inference algorithm is a UI win

• it’s good to coerce the product of any entry point, just for doc reasons

Never say type
• Learn the secret language of Hoon

• an expression (AST noun) is a twig

• a type (as in set of nouns) is a span
• a type (as in constructor/declaration) is a mold

• a type (as in MIME type) is a mark

• Hoon is a pure prototype language
• there is no syntax for a span; it is only defined as the range of a computation

• A mold is a normalizing function on an arbitrary noun
• a true mold is idempotent, so =((mold x) (mold (mold x)))
• the only time we actually call a mold is to validate network data

Basic span concepts
• twigs are boring once you understand spans

• mold for a slightly simplified span:

• missing only: aliases, variance and typeclasses

Unboring spans: $atom
• {$atom p/term q/(unit atom))}

• if q is set, u.q is the only atom in the range (constant)

• p is an aura, a symbol which describes units/presentation/constraint

• auras are unenforced conventions

• auras specialize by extension right

• @t for UTF-8 text, @ta ASCII, @tas ASCII with symbol constraint

• @s for signed integer, @sx for signed hexadecimal integer

• auras can be cast upward or downward, but not across

Unboring spans: $core
• {$core p/span q/(map term twig)}

• a core is a [battery payload] cell

• p is the span of the payload

• q is a table of computed attributes, or arms

• the battery is the tree of the arm formulas

• the subject of each arm is the core

• single namespace searches battery first, then payload

• a core is the general case of functions and objects
• a function in Hoon is a gate: a special case of core

• a gate has one nameless arm ($) and a payload [sample context]

• a method in Hoon is an arm which produces a gate

• an object in Hoon is a core whose arms are all methods

Advanced span theory

• the $hold form is manual laziness
• but also lets conservative worklist algorithms prune recurrent traverses

• branch conditions are analyzed for type inference
• this allows classic functional pattern matching

• two kinds of polymorphism: variance and genericity
• polymorphism is about compatibility of mutated cores (Liskov substitution)

• variance: does mutant payload match original payload?

• collect all four: covariance, contravariance, invariance, bivariance

• genericity: does battery formula work with mutant payload?

• generic (wet) arms expand inline like macros

Syntax design

• Hoon syntax is twig syntax

• twig syntax is functionally complex and looks gnarly
• but everyone who learns it is surprised at how easy it was

• Hoon solves three problems with functional syntax
• expressions grow downward and to the right

• solution: backstep indentation

• either terminator piles or significant whitespace

• solution: self-terminating form

• hard to distinguish special forms from symbols

• solution: no macros, marked keywords / runes

Twig structure
• a twig is the AST expression

• which compiles to a Nock formula, which defines a function of the subject

• any cell [twig twig] is also a twig
• which constructs the cell of its subtrees, like Lisp cons

• Hoon is tuple-centric, not list-centric, because types work

• any other twig is a tagged union, [stem bulb]
• the head of the twig is an atom, its stem

• the stem is a 2-4 byte term (ASCII symbol)

• the shape of the tail depends on the stem

• but usually a tuple or list of twigs

Regular forms, flat + tall

• every stem defines its own bulb
• most are 1-ary, 2-ary, 3-ary or 4-ary tuples; some are n-ary lists

• every stem with a tuple/list bulb has a regular form

• regular forms come in two forms: flat and tall
• a flat twig is delimited by parens, and separates subtwigs by one space:

• a tall twig has no delimiters, and separates subtwigs by 2+ spaces:

• goal: look like a procedural expression-statement mix

Runes and irregular forms
• irregular form: always flat, always ASCII, and always a twig
• a regular form can use a keyword or a rune

• keyword is colon-prefixed: :if(a b c)
• rune is a digraph: ?:(a b c)

• first character defines role (eg, all ? runes are conditionals)

• ASCII reloaded:

Two forms of FizzBuzz

Arvo concepts

• the Arvo kernel is a Hoon core
• with a fixed battery exporting a few arms

• including a transition function T(event) → (actions, new core)

• the kernel ABI is frozen at the Nock level

• so any event can replace Arvo or even Hoon

• as long as it can build a core that looks the same to Nock

• Arvo proper is ~600 lines
• internal event cascade with causal stack

• global typed referentially transparent namespace

• load and reload kernel modules (vanes), like baby kernels

Arvo vanes (kernel modules)

• %ames, encrypted packet network

• %behn, timers

• %clay, revision-controlled typed filesystem

• %dill, console

• %eyre, HTTP client/server with reactive apps

• %ford, functional build system

• %gall, applications

Urbit identity concepts
• “Urbit” just means the Nock/Hoon/Arvo stack

• and more specifically the PKI / identity model

• “an urbit” means one event history / state / instance/ node, with one identity

• identity creation is part of the boot process

• the identity is a ship, the instance is a pier

• one system solves:
• human-memorable cryptographic identity

• P2P packet routing address

• base of global immutable namespace path

• assault on Zooko’s triangle
• trivial solution: identity is 128-bit public-key hash

• tradeoff: memorable, but not meaningful

A civil address space
• phonemic base-256 makes numbers memorable

• 0x802a.136d in @ux; .128.42.19.109 in @if; ~patnub-tarlud in @p

• a 128-bit “wild” ship is called a comet
• but shorter numbers are more memorable, hence more valuable

• a 64-bit “civil” address space can overload it
• 64-bit ship: moon; ~padfes-sopden-difmyl-padtul; connected device

• 32-bit ship: planet; -difmyl-padtul; human being

• 16-bit ship: star; ~mocryg; minor infrastructure

• 8-bit ship: galaxy; ~num; major infrastructure

• each tier is initially signed by its half-width parent
• but signs its own key update; renewal is revocation

• ships can be traded like bitcoin, but low-frequency “spends” don’t need a blockchain

• galaxies are “premined” in the kernel source

On purpose and hindsight

• but was it really necessary to invent all this crap?

• a personal server is a social server
• when two humans socialize, they should exchange messages directly

• and not fall back into the degenerate case of a central server

• centralized programming is always easier
• in today’s infrastructure it’s orders of magnitude easier

• the criterion: difficulty of distributed programming

• a true personal server must solve this problem
• some impersonal servers wouldn’t mind as well

Programmer experience
• dereference the global immutable typed namespace

• application state is permanent, no database required

• update source code propagates reactively via revision control
• application type changes require typed state adapters

• two messaging patterns, poke and peer
• no abstraction leakage versus local communication

• %eyre lets web clients poke and peer over HTTP

• a poke is a typed, transactional message
• exactly-once delivery (even though it’s impossible)

• no return data if transaction succeeds

• message is automatically validated

• backward-compatible protocol updates cause no errors in a live network

• passed to the receiving program as a typed event

• end-to-end acknowledgments mean single error mode

• sender queues until message delivered or rejected

• P2P network delivers anywhere

• authenticated and encrypted, of course

• a peer creates a subscription which streams typed diffs

System status
• 30,000 lines of Hoon (Hoon, Arvo, all vanes, and basic apps)

• open source and patent-free

• urbit.org
• served by Urbit (behind nginx :-)

• github.com/urbit

• somewhere between alpha and beta quality
• small live network, “used in anger”, working shell and chat apps

• Arvo internal interfaces mostly stable

• global flag day (“continuity breach”) every few months

• documentation historically sucks, but getting better
• Hoon documentation is now adequate

• next phase is Arvo documentation

• ready for self-hosted address-space crowdsale

http://urbit.org
http://github.com/urbit

