Urbit Hoon Reference Card %140 Version 2022-04-03

| bar core expressions
|l_ spec alas (map term tome)
produce a door (a core with sample)
1% (unit term) (map term tome)
produce a core (battery and payload)
|@ (unit term) (map term tome)
produce a wet core (battery and payload)
| : [hoon hoon]
produce a gate with a custom sample
. hoon
produce a trap (a core with one arm)
|- hoon
produce a trap (a core with one arm) and evaluates it
|* hoon (map term tome)
produce a core whose battery includes a $ arm and computes the latter
|~ [spec value]
produce an iron gate
|* [spec value]
produce a wet gate (a one-armed core with sample)
|= [spec value]
produce a dry gate (a one-armed core with sample)
|2 hoon
produce a lead trap
I$ (lest term) spec
produce a mold

$ buc structures

8@ [spec spec]
structure that normalizes a union tagged by head atom

$_ hoon
structure that normalizes to an example _foo
S: (list spec)
form a cell type (tuple) [a=foo b=bar c=baz]

$% (list spec)
structure that recognizes a union tagged by head atom (e.g., a list of named parameters)
§< [spec spec]
structure from filter (excluding)
$> [spec spec]
structure from filter (requiring)
S| [spec hoon]
structure with verification
$& [spec hoon]
repaired structure
$2 hoon
structure that normalizes a union tagged by head depth (cell)
$~ [hoon spec]
define a custom type default value
$- [spec spec]
structure that normalizes to an example gate
$= [skin spec]

structure that wraps a face around another structure foo=bar
$§? (list spec)
form a type from a union of other types ?($foo Sbar $baz)

[O) e, Page 1 of 9

Urbit Hoon Reference Card %140 Version 2022-04-03

S. [spec (map term spec)]
structure as read-write core

$* hoon *foo
bunt a value (provide default “empty” value)
$; hoon

manual structure
% cen calls & samples
% [wing (list (pair wing hoon))]
resolve a wing with changes, preserving type
%. [hoon hoon]
call a gate, inverted
%~ [hoon hoon hoon hoon]
call a gate with triple sample
%+ [hoon hoon hoon]
call a gate with a cell sample
%- [hoon hoon]
call a gate (fun arg)
%: [hoon (list hoon)]
call a gate with many arguments
%~ [wing hoon hoon]
evaluate an arm in a door ~(arm core arg)
%* [wing hoon (list (pair winghoon))]
evaluate an expression, then resolves a wing with changes
%= [wing (list (pair wing hoon))]
resolve a wing with changes foo(x 1, y 2, z 3)
col cells
[hoon hoon]
construct a cell, inverted
:A [hoon hoon hoon hoon]

construct a cell, 4-tuple [a b cd]
o+ [hoon hoon hoon]
construct a cell, 3-tuple [a b c]
:- [hoon hoon]
construct a cell, 2-tuple [a b], a*b (a*b~c)
:~ (list hoon)
constructs a null-terminated list ~[a b]
:* (1list hoon)
construct an n-tuple [abcde.]

mark a comment (digraph, not rune)

dot nock evaluations
.+ atom

increment an atom using Nock 4 +(42)
.* [hoon hoon]

evaluate using Nock 2

.= [hoon hoon]
test for equality using Nock 5 =(a b)
.? hoon

test for cell or atom using Nock 3
A [spec hoon]
load from namespace using Nock 12 (scry)

[O) e, Page 2 of 9

Urbit Hoon Reference Card %140 Version 2022-04-03

-/= terminators
-- terminate core expression (digraph, not rune)
== terminate running series of Hoon expressions (digraph, not rune)
~ ket typecasting

Al hoon
convert a gold core to an iron core (invariant)
A, [hoon hoon]
typecast on value
M- [spec hoon]
typecast by explicit type label “foo'bar

A+ [hoon hoon]
typecast by inferred type (a fence)

r& hoon

convert a core to a zinc core (covariant)
A~ hoon

fold constant at compile time
A= [skin hoon]

bind name to a value foo=bar
A? hoon

convert a core to a lead core (bivariant)
A% spec

bunt, produces default mold value *foo
U spec ,foo

produce a ‘factory’ gate for a type (switch from regular parsing to spec/type parsing)
~ siginterpreter hints
~| [hoon hoon]
print in stack trace if failure
~§ [term hoon]
profiler hit counter
~ [hoon hoon]
print in stack trace, user-formatted
~% [chum hoon tyre hoon]
register jet
~/ [chum hoon]
register jet with registered context
~< [$@(term [term hoon]) hoon]
raw hint, applied to product (“backward”)
~> [$@(term [term hoon]) hoon]
raw hint, applied to computation (“forward”)
~+ [@ hoon]
cache computation
~& [@ud hoon hoon]
print (used for debugging)
~? [@ud hoon hoon hoon]
print conditionally (used for debugging)

~= [hoon hoon]
detect duplicate
~1 [hoon hoon]

print type if compilation failure

[O) e, Page 3 of 9

Urbit Hoon Reference Card %140

Version 2022-04-03

mic macros
[hoon (list hoon)]

call a binary function as an n-ary function :(fun a b c d)

hoon

(Sail) yield tape as XML element

[spec hoon hoon hoon]

glue a pipeline together (monadic bind)

[hoon (list hoon)]

glue a pipeline together with a product-sample adapter (monadic bind)
[spec hoon]

normalize with a mold, asserting fixpoint

(Sail) make a single XML node
(Sail) make a list of XML nodes from Hoon expression

marl:hoot
(Sail) make a list of XML nodes

tis subject modifications

[spec hoon]

combine default type value with the subject
[wing hoon hoon]

change one leg in the subject

[wing hoon hoon hoon]

change one leg in the subject conditionally

[skin wing hoon hoon]

pin the head of a pair; changes a leg with the tail
[(list (pair wing hoon)) hoon]

change multiple legs in the subject

[skin hoon hoon]

combine a named noun with the subject

[skin hoon hoon]

combine a named noun with the subject, inverted
[hoon hoon]

compose two expressions, inverted foo:bar
[hoon hoon]

compose two expressions

[hoon hoon]

combine a new noun with the subject

[(pair term (unit spec)) hoon hoon]

define an alias

[hoon hoon]

expose namespace (defines a bridge)

[hoon hoon]

combine a new noun with the subject

(list hoon)

compose many expressions

wut conditionals
(list hoon)

logical OR (loobean) | (foo bar baz)

[hoon hoon hoon]
branch on a boolean test
[hoon hoon hoon]

0 PUBLIC
DOMAIN

Page 4 of 9

Urbit Hoon Reference Card %140 Version 2022-04-03

<

7>

?I\

2%
2+
2&

{C

?!

branch on a boolean test, inverted

[hoon hoon]

negative assertion

[hoon hoon]

positive assertion

[wing (list (pair spec hoon))]

switch against a union, no default

[wing hoon hoon]

branch on whether a wing of the subject is a cell
[spec wing]

test pattern match

[skin wing]

test pattern match

[wing hoon (list (pair spec hoon))]

switch against a union, with default

(list hoon)

logical AND (loobean) &(foo bar baz)
[wing hoon hoon]

branch on whether a wing of the subject is an atom
[wing hoon hoon]

branch on whether a wing of the subject is null
hoon

logical NOT (loobean) !foo

zap wildcards

hoon

turn on stack trace

hoon

turn off stack trace

[*hoon hoon]

emit AST of expression (use as !, (*hoon expression))
[hoon hoon]

emit the type for an expression using the type of type (raw !>)
hoon

wrap a noun in its type

hoon

lift dynamic value into static context

[(1ist wing) hoon hoon]

evaluate conditional on existence of wing

hoon

make the Nock formula for a Hoon expression

[se(@ {@ @}) hoon]

restrict Hoon Kelvin version

crash

fas build operations (++ford arm of %clay)

foo

pin a version number

foo, *bar, baz=qux

import a file from the sur directory (* pinned with no face, = with specified face)
foo, *bar, baz=qux

import a file from the 1ib directory (* pinned with no face, = with specified face)
clay-raw /sys/vane/clay

[O) e, Page 5 of 9

Urbit Hoon Reference Card %140 Version 2022-04-03

import results of user-specified path wrapped in face
/% %mark
import mark definition from mar/
/$ %from %to
import mark conversion gate from mar/
/* myfile %hoon /gen/myfile/hoon
import the contents of a file in the desk converted to a mark (build-time static data)
[/~ face type /[path
import contents of a directory under face=(map @ta type)

+ 1lus arm definitions

label a chapter (produces no arm)
+$ [term spec]

produce a structure arm (type definition)
++ [term hoon]

produce a (normal) arm
+* [term term spec]

produce a type constructor arm

[O) e, Page 6 of 9

Urbit Hoon Reference Card

syntax

+1:[%a [%b %c]] [%a [%b %c]]

+2:[%a [%b %c]] %a
+3:[%a [%b %c]] [%b %c]

%140

[%a [%b %c]] .

O .

+4:[%a [%b %c]] %ride failed -<
O.
+6:[%a [%b %c]] %b +<

+7:[%a [%b %c]] %c

&n nth element
In tail after nth element

<[1 2 3]> renders list as a tape
>[1 2 3]< renders list as a tank

%.y
%.n

0 PUBLIC
DOMAIN

. current subject
+ +:.

+> 4>,
a.b.c limb search path

~ 0 (nil)
& yes/true/o
| no/false/1
%a constant
$ empty term (@tas)

‘urbit'cord, atom @t
"urbit"tape or list of characters
=wire shadow type name (in defn)
/path path name

% current path

s +>

1 [%a
1 [%a
1 [%a
:[%a
1 [%a
1 [%a

[%b
[%b
[%b
[%b
[%b
[%b

Version 2022-04-03

%c]] [%a [%b %c]]
%c]] %a

%c]] [%b %c]

%c]] %ride failed
%c]] %b

%c]] %c

lark syntax equivalents

+1
+2

+3 +

+4

-<

+5 ->
+6 +<
+7 +>
+8 -<-

~face face in outer core (*~face)
..arm core in which ++arm is defined
s . strip the face

-:!> type spear, use as -:!>(.3.14)

eny entropy
now current time
our ship

‘a [~ a]

~[abc] [abc~]

[a bc]~[[abc]~]

elementary molds

*

@
?

4

a/b [%a b]

noun
atom (atom)
cell
loobean
null

Page 7 of 9

Urbit Hoon Reference Card %140 Version 2022-04-03

aura notation
Each aura has a characteristic pattern allowing unique identification in its representation. Typically
this is indicated by a combination of ~, ., and -.

@
@c
@d
@da
@dr
@f
@i
@if
@is
@n
@p
@q
@r
@rh
@rs
@rd
@rq
@s
@sb
@sd
@sv

@sw
@sx

@t
@ta
@tas
@Qu
@ub
@Quc

@ud
@Qui
@Quv

@Quw

@Qux

Empty aura

Unicode codepoint ~-~45fed.

Date

Date, absolute ~2020.12.25..7.15.0..1ef5
Date, relative ~d71.h19.m26.s24..9d55
Loobean (for compiler, not castable) &

Internet address

IPv4 address .195.198.143.90

IPv6 address .0.0.0.0.0.1c.c3c6.8f5a
Nil (for compiler, not castable) ~

Phonemic base ~laszod-dozser-fosrum-fanbyr
Phonemic base, unscrambled (used with Urbit HD wallet) .~laszod-dozser-dalteb-hilsyn
IEEE-754 floating-point number

Floating-point number, half-precision, 16-bit .~~3.14

Floating-point number, single-precision, 32-bit -3.141592653589793
Floating-point number, double-precision, 64-bit .~3.141592653589793
Floating-point number, quadruple-precision, 128-bit .~~~3.141592653589793
Integer, signed (sign bit low)

Signed binary --0b10.0000

Signed decimal --1.000

Signed base-32 --0v201.4gvml.245kc
0123456789abcdefghijklmnopgrstuv

Signed base-64 --0w2.04AfS.G8xqc
0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHI JKLMNOPQRSTUVIWXYZ

Signed hexadecimal --0x2004.90fd
0123456789abcdef

UTF-8 text (cord) 'urbit'

ASCII text (knot) ~.urbit

ASCIl text symbol (term) %urbit

Integer, unsigned

Unsigned binary 0b10.1011

Bitcoin address 0c1A1zP1eP5QGef12DMPTfTL5SLmv7DivfNa
from set 123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIKLMNPQRSTUVWXYZ

Unsigned decimal 8.675.309

Unsigned decimal 01123456789

Unsigned base-32 0v88nvd
0123456789abcdefghijklmnopqrstuv

Unsigned base-64 Owx5~J
0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHI JKLMNOPQRSTUVIWXYZ -~

Unsigned hexadecimal 0x84.5fed
0123456789abcdef

Capital letters at the end of auras indicate the bitwidth in binary powers of two, starting from A.

0 PUBLIC
DOMAIN

@D 8-bit ASCII text

@rhe half-precision (16-bit) floating-point number

@uxG unsigned 64-bit hexadecimal

@uvl unsigned 512-bit integer (frequently used for entropy)

Page 8 of 9

Urbit Hoon Reference Card %140

Nock 4K

Version 2022-04-03

A noun is an atom or a cell. An atom is a natural number. A cell is an ordered pair of nouns.

Reduce by the first matching pattern; variables match any noun.

nock(a)
[a b c]

?[a

b]
b]

a]
b]

a]
a
d

b]
b]

#[1 a b]
#[(a + a) b]

#[(a +a + 1) b c]

#a

*[a [b c] d]
*[a 0 b]

*[a 1 b]

*[a 2 b c]

*[a 3 b]

*[a 4 b]

*[a 5 b c]

*[a 6 b c d]
*[a 7 b c]

*[a 8 b c]

*[a 9 b c]

*[a 10 [b c] d]
*[a 11 [b c] d]
*[a 11 b (]

*a

*a

[a [bc]]

0

1

+[a b]

1+ a

0

1

a

a

b

/[2 /[a b]]
/I3 /[a b]]
/a

;[a [b /[(a +a+1)c]] <]

#[a [/[(a + a) c] b]]
#a

[*[a b c] *[a d]]

/[b a]

b

[[a b] *[a c]]
?2*[a b]

+*[a b]

=[*[a b] *[a c]]

*[a *[[c d] @ *[[2 3] © *[a 4 4 b]]]]
[[a b] c]

[[[a b] a] c]

[[a c] 2 [0 1] 0 b]

#[b *[a c] *[a d]]

[[[a c] *[a d]] 0 3]
*[a c]

*a

slot operator (noun at tree address)
constant

evaluate

test for atom

increment

distribution

if-then-else
compose
extend
invoke

edit noun

hint

interpret

Page 9 of 9

