
Urbit Hoon Reference Card %140 Version 2022-04-03

| bar core expressions
|_ spec alas (map term tome)

produce a door (a core with sample)
|% (unit term) (map term tome)

produce a core (battery and payload)
|@ (unit term) (map term tome)

produce a wet core (battery and payload)
|: [hoon hoon]

produce a gate with a custom sample
|. hoon

produce a trap (a core with one arm)
|- hoon

produce a trap (a core with one arm) and evaluates it
|^ hoon (map term tome)

produce a core whose battery includes a $ arm and computes the latter
|~ [spec value]

produce an iron gate
|* [spec value]

produce a wet gate (a one-armed core with sample)
|= [spec value]

produce a dry gate (a one-armed core with sample)
|? hoon

produce a lead trap
|$ (lest term) spec

produce a mold
$ buc structures

$@ [spec spec]
structure that normalizes a union tagged by head atom

$_ hoon
structure that normalizes to an example _foo

$: (list spec)
form a cell type (tuple) [a=foo b=bar c=baz]

$% (list spec)
structure that recognizes a union tagged by head atom (e.g., a list of named parameters)

$< [spec spec]
structure from filter (excluding)

$> [spec spec]
structure from filter (requiring)

$| [spec hoon]
structure with verification

$& [spec hoon]
repaired structure

$^ hoon
structure that normalizes a union tagged by head depth (cell)

$~ [hoon spec]
define a custom type default value

$- [spec spec]
structure that normalizes to an example gate

$= [skin spec]
structure that wraps a face around another structure foo=bar

$? (list spec)
form a type from a union of other types ?($foo $bar $baz)

 Page 1 of 9

Urbit Hoon Reference Card %140 Version 2022-04-03

$. [spec (map term spec)]
structure as read–write core

$* hoon *foo
bunt a value (provide default “empty” value)

$; hoon
manual structure

% cen calls & samples
%_ [wing (list (pair wing hoon))]

resolve a wing with changes, preserving type
%. [hoon hoon]

call a gate, inverted
%^ [hoon hoon hoon hoon]

call a gate with triple sample
%+ [hoon hoon hoon]

call a gate with a cell sample
%- [hoon hoon]

call a gate (fun arg)
%: [hoon (list hoon)]

call a gate with many arguments
%~ [wing hoon hoon]

evaluate an arm in a door ~(arm core arg)
%* [wing hoon (list (pair winghoon))]

evaluate an expression, then resolves a wing with changes
%= [wing (list (pair wing hoon))]

resolve a wing with changes foo(x 1, y 2, z 3)

: col cells
:_ [hoon hoon]

construct a cell, inverted
:^ [hoon hoon hoon hoon]

construct a cell, 4-tuple [a b c d]
:+ [hoon hoon hoon]

construct a cell, 3-tuple [a b c]
:- [hoon hoon]

construct a cell, 2-tuple [a b], a^b (a^b^c)
:~ (list hoon)

constructs a null-terminated list ~[a b c]
:* (list hoon)

construct an n-tuple [a b c d e …]
::

mark a comment (digraph, not rune)
. dot nock evaluations

.+ atom
increment an atom using Nock 4 +(42)

.* [hoon hoon]
evaluate using Nock 2

.= [hoon hoon]
test for equality using Nock 5 =(a b)

.? hoon
test for cell or atom using Nock 3

.^ [spec hoon]
load from namespace using Nock 12 (scry)

 Page 2 of 9

Urbit Hoon Reference Card %140 Version 2022-04-03

-/= terminators
-- terminate core expression (digraph, not rune)
== terminate running series of Hoon expressions (digraph, not rune)
^ ket typecasting

^| hoon
convert a gold core to an iron core (invariant)

^. [hoon hoon]
typecast on value

^- [spec hoon]
typecast by explicit type label `foo`bar

^+ [hoon hoon]
typecast by inferred type (a fence)

^& hoon
convert a core to a zinc core (covariant)

^~ hoon
fold constant at compile time

^= [skin hoon]
bind name to a value foo=bar

^? hoon
convert a core to a lead core (bivariant)

^* spec
bunt, produces default mold value *foo

^: spec ,foo
produce a ‘factory’ gate for a type (switch from regular parsing to spec/type parsing)

~ sig interpreter hints
~| [hoon hoon]

print in stack trace if failure
~$ [term hoon]

profiler hit counter
~_ [hoon hoon]

print in stack trace, user-formatted
~% [chum hoon tyre hoon]

register jet
~/ [chum hoon]

register jet with registered context
~< [$@(term [term hoon]) hoon]

raw hint, applied to product (“backward”)
~> [$@(term [term hoon]) hoon]

raw hint, applied to computation (“forward”)
~+ [@ hoon]

cache computation
~& [@ud hoon hoon]

print (used for debugging)
~? [@ud hoon hoon hoon]

print conditionally (used for debugging)
~= [hoon hoon]

detect duplicate
~! [hoon hoon]

print type if compilation failure

 Page 3 of 9

Urbit Hoon Reference Card %140 Version 2022-04-03

; mic macros
;: [hoon (list hoon)]

call a binary function as an n-ary function :(fun a b c d)
;/ hoon

(Sail) yield tape as XML element
;< [spec hoon hoon hoon]

glue a pipeline together (monadic bind)
;~ [hoon (list hoon)]

glue a pipeline together with a product-sample adapter (monadic bind)
;; [spec hoon]

normalize with a mold, asserting fixpoint
;+

(Sail) make a single XML node
;*

(Sail) make a list of XML nodes from Hoon expression
;= marl:hoot

(Sail) make a list of XML nodes
= tis subject modifications

=| [spec hoon]
combine default type value with the subject

=. [wing hoon hoon]
change one leg in the subject

=? [wing hoon hoon hoon]
change one leg in the subject conditionally

=^ [skin wing hoon hoon]
pin the head of a pair; changes a leg with the tail

=: [(list (pair wing hoon)) hoon]
change multiple legs in the subject

=/ [skin hoon hoon]
combine a named noun with the subject

=; [skin hoon hoon]
combine a named noun with the subject, inverted

=< [hoon hoon]
compose two expressions, inverted foo:bar

=> [hoon hoon]
compose two expressions

=- [hoon hoon]
combine a new noun with the subject

=* [(pair term (unit spec)) hoon hoon]
define an alias

=, [hoon hoon]
expose namespace (defines a bridge)

=+ [hoon hoon]
combine a new noun with the subject

=~ (list hoon)
compose many expressions

? wut conditionals
?| (list hoon)

logical OR (loobean) |(foo bar baz)
?: [hoon hoon hoon]

branch on a boolean test
?. [hoon hoon hoon]

 Page 4 of 9

Urbit Hoon Reference Card %140 Version 2022-04-03

branch on a boolean test, inverted
?< [hoon hoon]

negative assertion
?> [hoon hoon]

positive assertion
?- [wing (list (pair spec hoon))]

switch against a union, no default
?^ [wing hoon hoon]

branch on whether a wing of the subject is a cell
?= [spec wing]

test pattern match
?# [skin wing]

test pattern match
?+ [wing hoon (list (pair spec hoon))]

switch against a union, with default
?& (list hoon)

logical AND (loobean) &(foo bar baz)
?@ [wing hoon hoon]

branch on whether a wing of the subject is an atom
?~ [wing hoon hoon]

branch on whether a wing of the subject is null
?! hoon

logical NOT (loobean) !foo

! zap wildcards
!: hoon

turn on stack trace
!. hoon

turn off stack trace
!, [*hoon hoon]

emit AST of expression (use as !,(*hoon expression))
!; [hoon hoon]

emit the type for an expression using the type of type (raw !>)
!> hoon

wrap a noun in its type
!< hoon

lift dynamic value into static context
!@ [(list wing) hoon hoon]

evaluate conditional on existence of wing
!= hoon

make the Nock formula for a Hoon expression
!? [$@(@ {@ @}) hoon]

restrict Hoon Kelvin version
!! ~

crash
/ fas build operations (++ford arm of %clay)

/? foo
pin a version number

/- foo, *bar, baz=qux
import a file from the sur directory (* pinned with no face, = with specified face)

/+ foo, *bar, baz=qux
import a file from the lib directory (* pinned with no face, = with specified face)

/= clay-raw /sys/vane/clay

 Page 5 of 9

Urbit Hoon Reference Card %140 Version 2022-04-03

import results of user-specified path wrapped in face
/% %mark

import mark definition from mar/
/$ %from %to

import mark conversion gate from mar/
/* myfile %hoon /gen/myfile/hoon

import the contents of a file in the desk converted to a mark (build-time static data)
/~ face type /path

import contents of a directory under face=(map @ta type)
+ lus arm definitions

+|

label a chapter (produces no arm)
+$ [term spec]

produce a structure arm (type definition)
++ [term hoon]

produce a (normal) arm
+* [term term spec]

produce a type constructor arm

 Page 6 of 9

Urbit Hoon Reference Card %140 Version 2022-04-03

syntax
+1:[%a [%b %c]] [%a [%b %c]] .:[%a [%b %c]] [%a [%b %c]]

+2:[%a [%b %c]] %a -:[%a [%b %c]] %a

+3:[%a [%b %c]] [%b %c] +:[%a [%b %c]] [%b %c]

+4:[%a [%b %c]] %ride failed -<:[%a [%b %c]] %ride failed

+6:[%a [%b %c]] %b +<:[%a [%b %c]] %b

+7:[%a [%b %c]] %c +>:[%a [%b %c]] %c

&n nth element lark syntax equivalents
|n tail after nth element +1 +5 ->

+2 - +6 +<
<[1 2 3]> renders list as a tape +3 + +7 +>
>[1 2 3]< renders list as a tank +4 -< +8 -< -

. current subject ^face face in outer core (^^face)
+ +:. ..arm core in which ++arm is defined
- -:. , ,. strip the face

+> +>:.
a.b.c limb search path -:!> type spear, use as -:!>(.3.14)

~ 0 (nil) eny entropy `a [~ a]
%.y & yes/true/0 now current time ~[a b c] [a b c ~]
%.n | no/false/1 our ship [a b c]~ [[a b c] ~]

%a constant a/b [%a b]
$ empty term (@tas)

elementary molds
'urbit'cord, atom @t * noun
"urbit"tape or list of characters @ atom (atom)
 =wire shadow type name (in defn) ^ cell
/path path name ? loobean

% current path ~ null

 Page 7 of 9

Urbit Hoon Reference Card %140 Version 2022-04-03

aura notation
Each aura has a characteristic pattern allowing unique identification in its representation. Typically
this is indicated by a combination of ~, ., and -.
@ Empty aura
@c Unicode codepoint ~-~45fed.
@d Date
 @da Date, absolute ~2020.12.25..7.15.0..1ef5
 @dr Date, relative ~d71.h19.m26.s24..9d55
@f Loobean (for compiler, not castable) &
@i Internet address
 @if IPv4 address .195.198.143.90
 @is IPv6 address .0.0.0.0.0.1c.c3c6.8f5a
@n Nil (for compiler, not castable) ~
@p Phonemic base ~laszod-dozser-fosrum-fanbyr
@q Phonemic base, unscrambled (used with Urbit HD wallet) .~laszod-dozser-dalteb-hilsyn
@r IEEE-754 floating-point number
 @rh Floating-point number, half-precision, 16-bit .~~3.14
 @rs Floating-point number, single-precision, 32-bit .3.141592653589793
 @rd Floating-point number, double-precision, 64-bit .~3.141592653589793
 @rq Floating-point number, quadruple-precision, 128-bit .~~~3.141592653589793
@s Integer, signed (sign bit low)
 @sb Signed binary --0b10.0000
 @sd Signed decimal --1.000
 @sv Signed base-32

0123456789abcdefghijklmnopqrstuv
--0v201.4gvml.245kc

 @sw Signed base-64 --0w2.04AfS.G8xqc
0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

 @sx Signed hexadecimal
0123456789abcdef

--0x2004.90fd

@t UTF-8 text (cord) 'urbit'
 @ta ASCII text (knot) ~.urbit
 @tas ASCII text symbol (term) %urbit
@u Integer, unsigned
 @ub Unsigned binary 0b10.1011
 @uc Bitcoin address 0c1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa

from set 123456789abcdefghijklmnopqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ
 @ud Unsigned decimal 8.675.309
 @ui Unsigned decimal 0i123456789
 @uv Unsigned base-32

0123456789abcdefghijklmnopqrstuv
0v88nvd

 @uw Unsigned base-64 0wx5~J
0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ-~

 @ux Unsigned hexadecimal
0123456789abcdef

0x84.5fed

Capital letters at the end of auras indicate the bitwidth in binary powers of two, starting from A.
@tD 8-bit ASCII text
@rhE half-precision (16-bit) floating-point number
@uxG unsigned 64-bit hexadecimal
@uvJ unsigned 512-bit integer (frequently used for entropy)

 Page 8 of 9

Urbit Hoon Reference Card %140 Version 2022-04-03

Nock 4K

A noun is an atom or a cell. An atom is a natural number. A cell is an ordered pair of nouns.

Reduce by the first matching pattern; variables match any noun.

nock(a) *a
[a b c] [a [b c]]

?[a b] 0
?a 1
+[a b] +[a b]
+a 1 + a
=[a a] 0
=[a b] 1

/[1 a] a
/[2 a b] a
/[3 a b] b
/[(a + a) b] /[2 /[a b]]
/[(a + a + 1) b] /[3 /[a b]]
/a /a

#[1 a b] a
#[(a + a) b c] #[a [b /[(a + a + 1) c]] c]
#[(a + a + 1) b c] #[a [/[(a + a) c] b] c]
#a #a

[a [b c] d] [[a b c] *[a d]]

*[a 0 b] /[b a] slot operator (noun at tree address)
*[a 1 b] b constant
*[a 2 b c] *[*[a b] *[a c]] evaluate
[a 3 b] ?[a b] test for atom
[a 4 b] +[a b] increment
[a 5 b c] =[[a b] *[a c]] distribution

*[a 6 b c d] *[a *[[c d] 0 *[[2 3] 0 *[a 4 4 b]]]] if-then-else
*[a 7 b c] *[*[a b] c] compose
*[a 8 b c] *[[*[a b] a] c] extend
*[a 9 b c] *[*[a c] 2 [0 1] 0 b] invoke
*[a 10 [b c] d] #[b *[a c] *[a d]] edit noun

*[a 11 [b c] d] *[[*[a c] *[a d]] 0 3] hint
*[a 11 b c] *[a c]

*a *a interpret

 Page 9 of 9

