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Abstract

A “solid-state interpreter” (SSI) is an interpreter which is also
an ACID database. An “operating function” (OF) is a general-
purpose OS defined as a pure function of its input stream. Urbit
is an SSI defined as an OF. Functionally, Urbit is a full execution
stack. VM, compiler, OS, network, web server, and core apps are
30kloc; the system is alpha-grade with a live, fairly stable net-
work.

1 Introduction
What is Urbit? We can answer six ways: functionally, formally, me-
chanically, productively, securely and practically.

1.1 Functionally
Urbit is a new clean-slate system software stack. A nonpreemptive
OS (Arvo), written in a strict, typed functional language (Hoon) which
compiles itself to a combinator VM (Nock), drives an encrypted packet
network (Ames) and defines a global version-control system (Clay). In-
cluding basic apps, the whole stack is about 30,000 lines of Hoon.
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1.2 Formally
Urbit is an “operating function”: a general-purpose OS whose entire
lifecycle is defined as a pure, frozen, small function on its input stream.
The function is an interpreter; it compiles an initial language, which
boots an initial kernel. Everything but the lifecycle function can up-
grade itself from source code in the input stream.

1.3 Structurally
Urbit is a “solid-state interpreter”: an interpreter with no transient
state. The interpreter is an ACID database; an event is a transaction in
a log-checkpoint system. The Urbit interpreter runs on a normal Unix
server; it interacts with the Unix user, on the console or via FUSE; with
other Urbit nodes, in its own protocol over UDP; with the Internet, as
an HTTP client or server.

1.4 Securely
Security problems are an inevitable consequence of unrigorous and/or
complex computing semantics. Rigor and simplicity are hard proper-
ties to enforce retrospectively on the classical Unix/IETF/W3C stack.

A new stack, designed as a unit, learning from all the mistakes of
20th-century software and repeating none of them, should be simpler
and more rigorous than what we use now. Otherwise, why bother?

One example of painful heterogeneity inherited from the current
stack: the relationship between a database schema, a MIME type,
a network protocol, and a data structure. The same semantics may
be reimplemented incompatibly at four layers of this stack. The pro-
grammer is constantly hand-translating values. Helpful tools abound
(“ORM is the Vietnam of computer science” [17]), but no tool can fix ar-
chitectural impedance mismatches. There are always cracks; bugs and
attackers slip between them.

1.5 Productively
Urbit is designed to work as a “personal server.” This is not yet an
established product category, so let’s explain it.
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Everyone has a personal client, a secondary kernel isolated from
the OS: the browser. Almost no one has a personal server, but they
should. Urbit is a “browser for the server side”; it replaces multiple
developer-hosted web services on multiple foreign servers, with multi-
ple self-hosted applications on one personal server.

Why attack this problem with a clean-slate stack? Arguably, what
stops people from running their own servers is the usability challenge
of administering a Unix box on the public Internet. The Unix/Internet
platform is 40 years old and has built up a lot of complexity. Mechanical
simplicity does not guarantee humane usability, but it’s a good start.

A clean-slate personal server, with its own encrypted packet over-
lay network, can forget that Unix and the Internet exist. It can run
on Linux and send packets over UDP; it can both provide and consume
HTTP services; but its native stack is not affected by 20th-century de-
sign decisions.

HTTP services? Since a new network has no network effect, a node
must find its first niche as a client and/or server on the old network.
For its earliest users, Urbit has two main roles: as an HTTP client, a
personal API aggregator (which organizes and controls your own data
on your existing cloud accounts); (2) as an HTTP server, personal pub-
lishing and identity management (blogging, archiving, SSO, etc.). But
Urbit still differs from existing Web application platforms in that an
instance is designed to serve one primary user for its whole lifespan.

1.6 Practically
Urbit is working code in semi-closed alpha test. It self-hosts, maintains
a small live network, runs a distributed chat service, and serves its own
website (urbit.org). Urbit is MIT-licensed and patent-free.

Urbit is not yet secure or reliable. It’s not yet useful for anything,
except developing Urbit.

This paper is a work-in-progress presentation, not a final report. It
contains numerous small errata relative to the running codebase. We’d
rather describe what the finished Urbit will do than what an incom-
plete version happens to do now.
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2 Highlights and novelties
Anything that calls itself a clean-slate stack should be indistinguish-
able from a boot ROM from a crashed alien spaceship. Sometimes this
is impractical; the aliens probably wouldn’t use ASCII (let alone Uni-
code), AES, etc. (There’s a fine line between a metaphor and an actual
hoax.) And some designs are genuinely universal; an alien linked list
is a linked list.

(Urbit also invents a lot of alien technical jargon. We admit that
this is annoying. Abstractly, it’s part of the clean-slate program: words
smuggle in a lot of assumptions. Concretely, changing the words does
indeed change the concepts; for instance, we say type informally to
mean any one of three quite different concepts: span, mold, or mark.)

Before we review the design more systematically, let’s take a quick
tour of Urbit’s more unusual architectural features, working upward
through the layers covered in this paper (Nock, Hoon, Arvo and Ames).

2.1 Nock (combinator interpreter, page 15)
Nock, a non-lambda combinator interpreter, is Urbit’s VM and axioma-
tic definition. Its informal spec is 340 bytes compressed. Nock is
nowhere near the simplest possible definition of computing, but it’s
quite simple for a practical one. Nock is permanently frozen and will
never need updating.

A Nock value, or “noun”, is an unsigned integer of any size, or an
ordered pair of any two nouns. Nock is homoiconic, like Lisp; a Nock
function is a noun. Nock cannot create cycles, so nouns can be managed
without a tracing garbage collector.

Nock is a little like Lisp, if Lisp were only a compiler target and
not a high-level language. As an axiomatic model of computing, Lisp
and/or lambda are an imperfect fit, because the reduction axioms de-
fine high-level programming concepts such as variables and functions,
which (a) should not be coupled to the lower layer, and (b) are properly
human-interface features belonging in the upper layer. Nock defines no
variables, environments, functions, etc.; it doesn’t even have a syntax.

Nock’s only intrinsic integer operation is increment. Fancier func-
tions are accelerated not by escaping to an intrinsic, extension, or na-
tive method, but by registering and recognizing specific Nock code
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blocks in the standard library, then matching their semantics with cus-
tom interpreter modules, or “jets.” A jet may be implemented in native
code or even custom hardware; it can have no side effects, since all
it computes is one special case of the Nock function; it is easily tested
against the pure code. A more advanced system might use actual equiv-
alence proofs.

2.2 Hoon (typed functional language, page 20)
Hoon is a strict, higher-order typed functional language which compiles
itself to Nock. Nock acts as a sort of “functional assembly language.”
The Hoon-to-Nock transformation is designed to be minimal, like the
C-to-assembly transformation.

Users often complain that the mathematical abstractions beneath
functional languages are difficult to learn and master. Hoon is a low-
tech functional programming language which does not use category
theory, lambda calculus or unification inference. The Hoon style dis-
courages aggressive abstraction and promotes a concrete, almost im-
perative style.

Hoon inference works forward only; it cannot infer input type from
output type. The inference algorithm uses manual laziness and a con-
servative worklist algorithm, which terminates except in case of epic
screwup, and even then is easily traced. Hoon’s capacity for expressing
polymorphism (variance and genericity) approaches that of Haskell,
though the underlying mechanisms are quite different. The full back
end (type inference plus code generation) is about 1500 lines of Hoon.

A Hoon data structure is defined as an idempotent function that
normalizes an arbitrary noun. Therefore, defining a structure implies
defining a protocol validator for untrusted network data. Types, for-
mats, protocols, and schemas are all the same thing.

Hoon’s syntax is also unusual, and not simple. Hoon works hard to
distinguish intrinsic operators from symbols and functions. To avoid
write-only code, there are no user-defined macros or other gestures in
the DSL direction.

Whitespace in Hoon is not significant, as it is in Haskell. There are
no piles of parentheses or other right terminators, as there are in Lisp.
Hoon treats indentation as a scarce resource; well-indented Hoon with
a deep AST flows down the screen, not down and to the right as in Lisp.
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2.3 Arvo (nonpreemptive kernel, page 31)
The formal state of an Arvo instance is an event history, as a linked list
of nouns from first to last. The history starts with a bootstrap sequence
that delivers Arvo itself, first as an inscrutable kernel, then as the self-
compiling source for that kernel. After booting, we break symmetry by
delivering identity and entropy. The rest of the log is actual input.

The only semantics outside the event history are Nock itself, plus
a “functional BIOS”: the noun [2 [0 3] [0 2]]. This noun is a Nock
function; it calls the first event as a Nock function on the rest of history.
The result of this function is the current operating state, a noun.

This noun is the Arvo kernel, an object with one method which is
the main event loop. Arvo proper is not large: the kernel proper is
only about 600 lines of Hoon. Most system semantics are in kernel
modules (“vanes”), loaded as source. User-level code runs either at a
third layer within the sandbox vane %gall, or a fourth layer within the
shell (:dojo) application.

A vanilla event loop scales poorly in complexity. A system event
is the trigger for a cascade of internal events; each event can sched-
ule any number of future events. This easily degenerates into “event
spaghetti.” Arvo has “structured events”; it imposes a stack discipline
on event causality, much like imposing subroutine structure on gotos.

User-level code is virtualized within a Nock interpreter written in
Hoon (with zero virtualization overhead, thanks to a jet). Arvo defines
a typed, global, referentially transparent namespace with the Ames
network identity (page 34) at the root of the path. User-level code
has an extended Nock operator that dereferences this namespace and
blocks until results are available. So the Hoon programmer can use
any data in the Urbit universe as a typed constant.

Most Urbit data is in Clay, a distributed revision-control vane. Clay
is like a typed Git. If we know the format of an object, we can do
a much better job of diffing and patching files. Clay is also good at
subscribing to updates and maintaining one-way or two-way automatic
synchronization.

Nock is frozen, but Arvo can hotpatch any other semantics at any
layer in the system (apps, vanes, Arvo or Hoon itself) with automatic
over-the-air updates. Updated code is loaded from Clay and triggered
by Clay updates. If the type of live state changes, the new code must
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supply a function from old to new state.
As a “solid-state interpreter”, Arvo is designed to replace both the

interpreter and the database in the modern server execution stack. Its
event log is its transaction log. It persists by saving dirty pages to a
snapshot and/or replaying log entries.

Urbit is built with the explicit assumption that a perfectly reliable,
low-latency, high-bandwidth log in the cloud is a service we know how
to deliver. The log can be pruned at a reliable checkpoint, however.

A nonpreemptive OS remains an OS. Every OS needs interrupts; a
preemptive OS is interrupted every 20ms; a nonpreemptive OS is in-
terrupted, whether by hand or by a heuristic timer, every time it seems
to be taking too long. Interrupted calculations are either abandoned
or replaced with an error. Since only completed events are logged, log
replay terminates by definition.

2.4 Ames (P2P packet protocol, page 34)
Ames is an encrypted peer-to-peer network running as an overlay over
UDP. Ames does not have separate addressing and identity layers (like
IP and DNS). An Ames address is an identity, mapped to a phonemic
string to create a memorable pseudonym, and bound to a public key for
encrypted communication.

Ames addresses are 128-bit atoms. Addresses above 64-bit are
hashes of a public key. 64, 32, and 16-bit addresses are initially signed
by their half-width prefix. Initial fingerprints of 8-bit addresses are
hardcoded. 8, 16, and 32-bit addresses sign their own key updates and
are “sovereign.” Prefix servers are also supernodes for P2P routing.

Ames delivers messages of arbitrary length, broken into MTU-
shaped fragments. Because Urbit nodes are uniformly persistent, they
maintain persistent sessions; message delivery is exactly-once. Every
message is a transaction, and acknowledgments are end-to-end; the
packet-level acknowledgment that completes a message also reports
transaction success. A successful transaction has no result; a failed
transaction is a negative ack and can contain an error dump.

Ames messages are typed; the type itself is not sent, just a label
(like a MIME type) that the recipient must map to a local source path.
Validation failure causes a silent packet drop, because its normal cause
is a recipient that has not yet received a new protocol update; we want

7



the sender to back off. Ames also silently drops packets for encryption
failure; error reports are just an attack channel.

3 The solid-state interpreter
Let’s design a system software stack from scratch. We’ll call our design
a solid-state interpreter, or SSI. Urbit is one of many possible SSIs.

Briefly, an SSI is an interpreter which is also a database. In more
depth, an SSI combines three properties: uniform persistence, source-
independent packet networking, and high-level determinism.

3.1 Uniform persistence
Storage in an SSI is flat and uniformly persistent. “Uniform persis-
tence” is a degenerate case of orthogonal persistence [10]: there is no
separation into “memory” which is fast but volatile, and “disk” which
is slow and stable. The system’s state is one stable data structure.

A hardware implementation of uniform persistence could use
emerging technologies such as NVDIMMS [3]. Today, Urbit runs on
normal hardware, using a log-snapshot mechanism like a normal data-
base. Some low-latency stable storage (even just an SSD) remains
highly desirable.

A kernel which presents the abstraction of a single layer of perma-
nent state is also called a single-level store [12]. One way to describe
a single-level store is that it never reboots; a formal model of the sys-
tem does not contain an operation which unpredictably erases half its
brain.

(It’s especially unforgivable to expose this weird split-brain design
to the user. For instance, modern mobile OSes try to isolate the user
from the stateful nature of app instantiation and termination, but
never quite succeed.)

3.2 Source-independent packet networking
A pure SSI has no I/O except unreliable, insecure packet networking.
Why isn’t HDMI just an Ethernet cable? USB? PCI? History and not
much else.
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This is not just a connector issue. There is a categorical differ-
ence between a bus, which transports commands, and a network, which
transports packets. You can drop a packet but not a command; a packet
is a fact and a command is an order. To send commands over a wire is
unforgivable: you’ve turned your network into a bus. Buses are great,
but networks are magic.

Facts are inherently idempotent; learning fact X twice is the same
as learning it once. You can drop a packet, because you can ignore a
fact. Orders are inherently sequential; if you get two commands to do
thing X, you do thing X twice.

It’s possible to layer a command bus (TCP) on top of a packet net-
work (IP), but the abstraction leaks. If the socket closes, has the remote
endpoint received my last command? This is a case of the unsolvable
“two generals” problem [2]. Should a systems layer punt unsolvable
problem up to the developer?

Another IP mistake is to interpret a packet as a function of its rout-
ing topology. A source address is interesting metadata, but it is not
data. Fact X means fact X, whoever you heard it from. Packet seman-
tics should be source-independent (aka content-centric [4]).

Logically, we could imagine the ideal network as a global broadcast
Ethernet. Everyone hears every packet; every packet is signed and
encrypted. If you have the correct keys to authenticate and decode
a packet, you learn from it; otherwise, you discard it. Semantics are
independent of topology.

3.3 High-level determinism
Computation in an SSI is defined as a high-level deterministic inter-
preter. Any computer worthy of the name is deterministic, but its
determinism is normally defined as a CPU step function on a memo-
ry/register state.

If you interrupt an OS defined as a CPU and a memory image, you
produce undefined semantic state. At the high level, such a machine is
effectively nondeterministic.

High-level determinism is determinism at the semantic level. The
operating computation is a function call, not a clock cycle. The system
state is a data structure, not a memory image.
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3.4 Decidability, determinism and interruption
One LangSec technique is to reduce the expressiveness of a component
(such as an input recognizer) to render it more rigorous and tractable.
Urbit does not use this trick; it has no sub-Turing calculation model.

Can a solid-state interpreter (or any system) be both Turing-com-
plete, and deterministic/repeatable? This may seem theoretically im-
possible, but it’s actually quite practical.

Any practical nonpreemptive OS is interruptible. In exchange for
general simplicity across the whole system, the cooperative approach
to multitasking pushes the problem of identifying and managing long-
running computations up to the programmer. A complex computation
can be divided by the programmer into fine-grained subtasks; it can be
handled as fake I/O on a “worker thread” (a feature Urbit doesn’t have
but should); it can just be a tolerated unavailability period.

As CPUs get faster, cooperative multitasking becomes more prac-
tical, because the length of tolerated unavailability is computed on a
human scale; this is why we see node.js returning to the supposedly
obsolete design of System 7 and Windows 3.1.

But programmers screw up, and an infinite loop is a common bug.
Any nonpreemptive OS needs a way to interrupt a wayward event. This
is easy when the event is a human-generated console event: give the
user a secure attention key (e.g., control-C).

For all other events, a timer is required. Most events are packets,
and network stacks have a lot of timers already. A timer on network
packet processing should be seen as a network element; it detects con-
gestion at the CPU level, and drops the packet. To the network, an
infinite loop is indistinguishable from a cable cut.

Most important, an interrupted event never happened. The com-
puter is deterministic; an event is a transaction; the event log is a log
of successful transactions. In a sense, replaying this log is not Turing-
complete. The log is an existence proof that every event within it ter-
minates.

(Of course, a packet that times out remains a DoS attack. Be-
cause Ames addresses are scarce, DoS attacks via authenticated pack-
ets should be relatively easy to track and throttle.)
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3.5 Solid-state interpreter: intuitive description
We call an execution platform with these three properties (universal
persistence, source-independent packet I/O, and high-level determin-
ism) a solid-state interpreter (SSI).

A solid-state interpreter is a stateful packet transceiver. Imagine
it as a chip. Plug this chip into power and network; packets go in and
out, sometimes changing its state. The chip never loses data and has
no concept of a reboot; every packet is an ACID transaction.

A practical SSI, though in a philosophical sense an OS, actually
runs as a Unix process. (At some point a move down to the hypervi-
sor might be advisable.) For low-latency determinism, it logs its event
stream to a Raft/Paxos cluster. So that every restore doesn’t involve
replaying all its history, it periodically flushes dirty pages to a snap-
shot image. (This log-and-snapshot pattern is the way most modern
databases work.)

A deterministic interpreter can’t call out to the OS it’s running on;
it has to be isolated by definition. A new layer in the execution stack,
isolated from the legacy OS, has proven useful on the client side: we
call it a browser.

4 The operating function
An operating function (OF) is a single frozen function that defines the
complete semantics of a computer. Not every SSI (as defined above)
is an OF, but Urbit is. Specifically, the Urbit operating function is a
lifecycle function, which maps input history to current state.

4.1 Lifecycle function
Any SSI needs to define its semantics as a pure function. The obvious
way to define a stateful I/O transceiver is a transition function:

T : (State, Input)→ (State,Output)

Again, T must be frozen; if we want to change the computer’s seman-
tics, it has to be by changing the state.
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While this transition function will exist in practice, it’s not the right
way to define our interpreter in theory.

First, output doesn’t belong in the most fundamental definition of
the interpreter; output is optional. The system can’t tell whether its
outgoing packets are dropped or delivered. Output is in a semantic
sense a hint; the transceiver is not ordering a packet to be sent; it is
suggesting a packet that might be sent by the runtime system.

Second, since the interpreter’s semantics are frozen, we might as
well take advantage of this to define not just the transition function,
but the entire system lifespan, as a pure function. The lifecycle function

L : History → State

is a more general and useful definition.
In practice, any realistic lifecycle function L will have a transition

function T somewhere inside it, but the relationship may be complex.

4.2 Larval stage
We have two problems in designing our lifecycle function L. One, we
need to break symmetry. Even if our network is (logically) a global
party line, and everyone hears every packet, not everyone has the keys
to decode every packet.

The entropy and/or secrets that establish a node’s identity and
break symmetry need to be delivered as packets. But they can’t be
delivered over the party line; then they wouldn’t be secrets. Our model
seems too simple.

There’s also a tension between our desire for minimal semantics and
the actual complexity of decoding and interpreting packets. Since we’re
defining the entire interpreter as a frozen function, which is supposed
to be a general-purpose computer, it should be very obvious that this
function never needs updating. So its definition should be very small
and simple—ideally, fitting (readably) on a T-shirt.

But there’s simply no way a small simple function can decode and
interpret packets. For a packet transceiver, this is the entire function-
ality of the OS. We can imagine a very small OS in a few thousand
lines of code, but this is still much too big for a plausible solid-state
lifecycle function.
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Rather, we’d prefer to keep the lifecycle function as a trivial inter-
preter, and deliver the higher levels of the stack (such as a high-level
language, an OS, etc.) in the packet stream. When we combine high-
level code delivery with symmetry breaking, we have two problems that
both suggest the same solution: a larval stage.

Before we plug the newborn node into the network, we feed it a
series of bootstrap or “larval” packets that prepare it for adult life as
a packet transceiver on the public network. The larval sequence is
private, solving the secret delivery problem, and can contain as much
code as we like.

But isn’t this cheating? If the larval sequence is essential, isn’t the
true definition of the lifecycle function not L proper, but L plus the
larval sequence?

It’s cheating if and only if the code we deliver in the larval stage
can’t be updated by later packets in the adult stage. Unless it’s so
perfect it can be frozen forever, a solid-state interpreter is inherently
dependent on remote updates. Another way to describe its invariant is
that L is the only non-updatable semantics.

Any component above the L level that can be frozen should be; we
certainly strive for this ideal. But eliminating the need for a trusted
update server is a very long-term goal. Therefore, everything besides
L must be remotely updatable.

Symmetry breaking—the event that defines the identity of the com-
puter—is exempt from this requirement. Once identity is established,
it can’t be updated. If you want a new identity, create a new instance.

4.3 Step model
Finally, let’s relax the criterion that all events are packets. We’ll also
let the host OS send true commands. We’ll call this quantum of input,
packet or command, a step.

A packet can be trivially dropped; a command has to be handled (it
has no default semantics). Also, a packet is a bitstring; a command is a
symbolic data structure. As noted in Section 3.2, a packet is a fact and
a command is an order.

Commands let the interpreter talk to the host OS. The interpreter is
still isolated from the OS, but this just means their semantic definitions
are not entangled.
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An isolated functional interpreter can’t call OS APIs in the usual
impure fashion. It can process OS commands. In response to these
commands, it can suggest actions. Since output is out of scope for L,
the real T can do anything. And most real-world OS services can be
adapted into this step-action pattern.

When step processing fails or is interrupted, we can either discard
the step or replace it with an error command. For instance, it’s very
hard to know where code is spinning without a stack trace. This is
nondeterministic information by definition. However, one synonym for
“nondeterministic information” is “input.” We simply write our step
history with the crash report, not the original step; if we replay, we
replay the crash report.

5 The Urbit lifecycle function
Now we’re ready to outline Urbit’s solution to the lifecycle function
problem. Let’s define L and outline the initial semantics produced by
the larval stage, also describing the transition function T .

5.1 Nouns
A value in Urbit is a noun. A noun is an atom or a cell. An atom is an
unsigned integer of any size. A cell is an ordered pair of any two nouns.

Nouns are comparable to Lisp S-expressions [8], but are simpler.
Sexprs are designed for direct use in a typeless language; nouns are
designed as a substrate for a statically typed language at a higher level.
S-expressions need dynamic type flags on atoms (for instance, the “S”
stands for “symbol”), because you can’t print an atom without knowing
whether it’s an integer, a string, a float, etc. If a static type system is
expected, these flags are just cruft.

For similar reasons, there is no one noun syntax. However, we
normally write cells in brackets [a b] that associate right: [a b c d]
means [a [b [c d]]]. Note that [a b] is not Lisp (a b), but rather
(cons a b)—that is, it’s a cons cell, not a list. Noun conventions favor
tuples or “improper lists,” another choice that makes more sense in a
typed environment.
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Real-world S-expression systems tend to be leaky abstractions, sup-
porting mutation, cycles, pointer equality tests, etc. The noun abstrac-
tion is opaque; for example, equality is a full tree comparison. For fast
comparisons and associative containers, we do compute a 31-bit lazy
Merkle hash (Murmur3 [1]) on all indirect nouns, but this remains se-
mantically opaque.

5.2 Nock
You can think of Nock as a “functional assembly language.” It’s a simple
combinator interpreter defined by the spec in Listing 1.

The spec is a system of reduction rules. As appropriate for a system
of axioms, it’s written in pseudocode.

Variables match any noun. Rules closer to the top match with high-
er priority. A rule that reduces to itself is an infinite loop, which is
semantically equivalent to a crash—they’re both ⊥. (Of course, a prac-
tical interpreter reports this crash rather than enacting it.)

Nock(a) is the full reduction of *a, where a is any noun.
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Listing 1: Nock.
?[a b] 0
?a 1
+[a b] +[a b]
+a 1 + a
=[a a] 0
=[a b] 1
=a =a

/[1 a] a
/[2 a b] a
/[3 a b] b
/[(a + a) b] /[2 /[a b]]
/[(a + a + 1) b] /[3 /[a b]]
/a /a

*[a [b c] d] [*[a b c] *[a d]]

*[a 0 b] /[b a]
*[a 1 b] b
*[a 2 b c] *[*[a b] *[a c]]
*[a 3 b] ?*[a b]
*[a 4 b] +*[a b]
*[a 5 b] =*[a b]

*[a 6 b c d] *[a 2 [0 1] 2 [1 c d] [1 0] 2 [1 2 3]
⇒ [1 0] 4 4 b]

*[a 7 b c] *[a 2 b 1 c]
*[a 8 b c] *[a 7 [[7 [0 1] b] 0 1] c]
*[a 9 b c] *[a 7 c 2 [0 1] 0 b]
*[a 10 [b c] d] *[a 8 c 7 [0 3] d]
*[a 10 b c] *[a c]

*a *a
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6 Operators
The pseudocode notation defines five prefix operators: ?, +, =, /, and *.

?[x], the depth test operator, produces 0 if x is a cell, 1 if it is an
atom.

+[x], the increment operator, produces the atom x+ 1, crashing if x
is a cell.

=[x y], the comparison operator, produces 0 if x and y are the same
noun, 1 otherwise. =x, where x is an atom, crashes.

/ is a tree addressing operator. The root of the tree is 1; the left
child of any node n is 2n; the right child is 2n+1. /[x y] is the subtree
of y at address x. 0 is not a valid address, and any attempt to take the
child of an atom crashes.

(For instance, /[1 [541 25 99]] is [541 25 99]; /[2 [541 25 99]]
is 541; /[3 [541 25 99]] is [25 99]; /[6 [541 25 99]] is 25; /[12 [541
25 99]] crashes.)

*[x y] is the Nock interpreter function. x, called the subject, is the
data. y, called the formula, is the code.

6.1 Instructions
A valid formula is always a cell. If the head of the formula is a cell,
Nock treats both head and tail as formulas, resolves each against the
subject, and produces the cell of their products. In other words, the
Lisp program (cons x y) becomes the Nock formula [x y].

If the head of the formula is an atom, it’s an instruction from 0 to
10.

A formula [0 b] produces the noun at tree address b in the subject.
A formula [1 b] produces the constant noun b.
A formula [2 b c] treats b and c is formulas, resolves each against

the subject, then computes Nock again with the product of b as the
subject, c as the formula. Without 2, Nock is not Turing-complete.

In formulas [3 b], [4 b], and [5 b], b is another formula, whose
product against the subject becomes the input to an axiomatic operator.
3 is ?, 4 is +, 5 is =.

Instructions 6 through 10 are macros; deleting them from Nock
would decrease compactness, but not expressiveness.
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[6 b c d] is if b, then c, else d. Each of b, c, d is a formula against
the subject. In b, 0 is true and 1 is false.

[7 b c] composes the formulas b and c.
[8 b c] produces the product of formula c, against a subject whose

head is the product of formula b with the original subject, and whose
tail is the original subject. (Think of 8 as a “variable declaration” or
“stack push.”)

[9 b c] computes the product of formula c with the current sub-
ject; from that product d it extracts a formula e at tree address b, then
computes *[d e]. (Think, very roughly, of d as an object and e as a
method.)

[10 b c] is a hint semantically equivalent to the formula c. If b is
an atom, it’s a static hint, which is just discarded. If b is a cell, it’s a
dynamic hint; the head of b is discarded, and the tail of b is executed as
a formula against the current subject; the product of this is discarded.

A practical interpreter can do anything with discarded data, so long
as the result it computes complies with the semantics of Nock. For
example, the simplest use of hints is the ordinary “debug printf.” It is
erroneous to skip computing dynamic hints; they might crash.

6.2 Motivation
Nock is Lisp without upholstery. All user-level features have been
stripped for use as a functional assembly language: syntax, variables,
even scope and functions. Tree addressing replaces the whole architec-
ture of free and bound variables. There is nothing like a gensym. The
Lisp environment, a rare exception to Lisp’s homoiconicity (except in
very naive Lisps, the environment is not a user-level data structure),
is replaced by the Nock subject, a ordinary noun.

Other typed functional languages (such as Tarver’s Qi [13] and Shen
[14]) have used unmodified Lisps as a compilation target; this is a great
strategy for maturity, but it leaves significant simplicity gains uncap-
tured.

6.3 Optimization
The reader may have noticed one problem with Nock: its only arith-
metic operation is increment.
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How can an interpreter whose only arithmetic operator is increment
compute efficiently? For example, the only way to decrement n is to
count up to n− 1.

Obviously, the solution is: a sufficiently smart compiler [22]. It is
possible to imagine a special-purpose optimizer that analyzed a Nock
formula and determined that it actually computed decrement. We
could also imagine an optimizer for addition, etc. Each of these op-
timizers would be nontrivial.

But a sufficiently smart optimizer doesn’t need to optimize every
Nock formula that could calculate a decrement function. It only needs
to optimize one: the one we actually run. This will be the decrement in
the kernel library. Any other decrement will be O(n); and anyone who
rolls their own decrement deserves it.

Again: the optimizer need not analyze formulas to see if they’re
decrements. It only needs to recognize the set of standard decrements
which it actually executes. In the common case, this set has one mem-
ber.

To declare itself as a candidate for optimization, the kernel dec func-
tion applies a hint that tells the interpreter its official name. The in-
terpreter can check this assertion by checking a hash of the formula
against its table of known formulas.

The C module that implements the efficient decrement is called a
“jet.” The jet system should not be confused with an FFI: a jet has no
reason to make system calls, must never be used to produce side effects,
and is always bound to a pure equivalent.

Jets separate mechanism and policy in Nock execution. Except for
perceived performance, neither programmer nor user has any control
over whether any formula is jet-propelled. A jet can be seen as a sort of
“software device driver,” although invisible integration of exotic hard-
ware (like FPGAs) is another use case.

Unlike intrinsic instructions, in a classic interpreter design, jets do
not have to be correlated with built-in or low-level functionality. They
also can be written in reverse from existing low-level code with tightly
defined semantics; for instance, Urbit crypto is jetted by C reference
implementations from well-known libraries.

At present all jets are shipped with the interpreter and there is no
way to install them from userspace, but this could change. Jets are
of course the main exploit vector for both computational correctness
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and security intrusion. Fortunately, jets don’t make system calls, so
sandboxing policy issues are trivial. But the sandbox transition needs
to be very low-latency.

A Nock interpreter written in Rust [7], with Rust jets, is in early
development by a third party. A safe systems language like Rust is
probably the right long-term solution.

6.4 L, the lifecycle function
The Urbit lifecycle function, as a Nock formula, is [2 [0 3] [0 2]]. If
E is the step history of an Urbit instance, the instance’s current state
is *[E [2 [0 3] [0 2]]].

This simply uses the first (larval) step as a formula, whose subject
is the rest of the step history.

6.5 T , transition function
T , the step transition function, is easy to understand now that we know
Nock.

In instruction 9, the c part produces a noun which is a sort of “ob-
ject” (a Hoon core, to get ahead of ourselves). The core (which is in fact
the Arvo kernel) is canonically a [code data] cell. The b part is the
address of a Nock formula within the core (not unlike a vtable index in
C++). The intended subject of this formula is the entire core.

Our state S is one of these cores. T is a “method” on the core. The
method’s product is a new state core S and a list of output actions.

It’s also easy to see, at least in principle, how we achieve the goal of
ensuring that all semantics are updatable. The new core produced by
T has to match the Nock interface of the old state (in the C++ sense,
the vtable indexes can’t change). Nock can’t change. Anything else can
change—Hoon could be replaced by a different language, so long as it
can generate a Nock core with the right shape.

7 Hoon: a strict functional language
Hoon is a strict, typed, higher-order pure functional language which
compiles itself to Nock. While Hoon is not much less expressive than
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Haskell, it avoids category theory and aspires to a relatively mechani-
cal, concrete style. A very rough comparison: Hoon is to Haskell as C
is to Pascal. Like C, Hoon is a relatively thin layer over the compiler
target (Nock).

7.1 Semantics
The semantic core of Hoon is the back-end compiler function, mint,
which is ~1500 lines of code for type inference and code generation.

mint works with three kinds of noun: nock, a Nock formula; twig, a
Hoon AST; and span, a Hoon type, which defines a set of valid nouns
and their semantics. The type signature of mint is $-({span twig}
{span nock}); that is, mint takes the subject type and the expression
source, and produces the product type and the Nock formula.

Understanding the span system gets us most of the way to under-
standing Hoon. We’ll do this in two steps. First we’ll explain a simpli-
fied version of span (Listing 2) that doesn’t support adequate polymor-
phism; next we’ll extend it to the real thing.

7.1.1 Simplified spans

Listing 2: Simplified ++span.
++ span

$@ $? $noun
$void

== $% {$atom p/term q/(unit atom)}
{$cell p/span q/span}
{$core p/span q/(map term span)}
{$face p/term q/span}
{$fork p/(set span)}
{$hold p/span q/twig}

==

$noun is the set of all nouns; $void is the set of no nouns. {$cell
p/span q/span} is the set of all cells with head p and tail q; {$fork
p/{set span}} is the union of all spans in the set p.
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A $hold span, with span p and twig q, is just a lazy reference to
the span of (mint p q). Since Hoon is a strict language, infinite data
structures are always expanded manually.

A {$face p/term q/span} wraps the label p around the span q. Re-
member that Hoon has no concept of scope or environment; therefore,
it has nothing like a symbol table. For a discussion of name resolution,
see page 23.

An $atom is an atom, with two twists. q is a unit, Hoon’s equivalent
of Maybe in Haskell or a nullable in Rust. If q is ˜, null, 0, any atom is
in the span. If q is [˜ x], where x is any atom, the span is a constant;
its only legal value is x.

p in the atom is a terminal used as an aura, or soft atom type.
Auras are a lightweight, advisory representation of the units, seman-
tics, and/or syntax of an atom. Two auras are compatible if one is a
prefix of the other.

For instance, @t means UTF-8 text (LSB low), @ta means ASCII
text, and @tas means an ASCII symbol. @u means an unsigned integer,
@ud an unsigned decimal, @ux an unsigned hexadecimal. You can use a
@ud atom as a @u or vice versa, but not as a @tas.

But auras are truly soft; you can turn any aura into any other, stat-
ically, by casting through the empty aura @. Again, auras are advisory;
these definitions are just conventions. Hoon is not dependently typed
and can’t enforce data constraints.

A $core is a code-data cell. The data (or payload) is the tail; the
code (or battery) is the head. p, a span, is the span of the payload. q, a
name-twig table, is the source code for the battery.

Each twig in the battery source is compiled to a formula, with the
core itself as the subject. The battery is a tree of these formulas, or
arms. An arm is a computed attribute against its core.

All code-data structures in normal languages (functions, objects,
modules, etc.) become cores in Hoon. A Hoon battery looks a bit like
a method table, but not every arm is a “method” in the OO sense. An
arm is a computed attribute. A method is an arm whose product is a
function.

A Hoon function (or gate) is a core with one arm, whose name is the
empty symbol $, and a payload whose shape is [sample context]. The
context is the subject in which the gate was defined; the sample is the
argument. To call the gate on an argument x, replace the sample (at
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tree address 6 in the core) with x, then compute the arm. (Of course,
we are not mutating the noun, but creating a mutant copy.)

7.1.2 Limb and wing resolution

Understanding spans, without any specific knowledge of twigs, for the
most part constrains Hoon enough to understand it in principle. One
exception is the limb and wing twigs that reference the subject.

An individual reference into the subject is a limb. A limb can be a
name (like foo) or a tree address (like +13, which is Nock /13).

Again, there are no symbol tables in Hoon. Name resolution is a
tree search in the subject: depth-first, head-first in cells. There is no
separate resolution model for arms and legs; the first match we find,
arm or leg, we return.

The search is stopped by a $face unless the limb matches the label.
If we find a face foo and we’re looking for a bar, we fail, instead of
looking inside the foo for a bar. But in a core where the search limb
matches no arm, we descend into the payload.

A basic name reference returns the first match, but a limb can carry
a skip counter (expressed by a unary ˆ prefix; e.g., ˆfoo to skip one foo,
ˆˆˆfoo to skip three) to find deeper matches that have been masked.

A wing is a search path, a list of limbs, syntactically separated by
. (“dot”). Wings associate right, not left as in classical languages;
foo.bar.baz in Java is baz.bar.foo, hence “baz in bar in foo”, in Hoon.

7.1.3 Forward tracing

Type inference in Hoon uses only forward tracing, not unification (trac-
ing backward) as in Hindley-Milner (Haskell, ML). Hoon needs more
user annotation than a unification language, but it’s easier for the pro-
grammer to follow what the algorithm is doing—just because Hoon’s
algorithm isn’t as smart. But the Hoon type system can solve most of
the same problems as Haskell’s.

Understanding $hold explains most of the type system. Computing
an arm on a core always produces a $hold; the compiler never calcu-
lates a “type signature” in any sense. Whenever type analysis encoun-
ters a $hold, we expand it. This can be and is cached, of course.
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Effective analysis of interesting data structures is possible, because
non-perverse code repeats its span as we trace through it. Consider the
simplest recursive span: a list.

Lists in Hoon are not a built-in language feature, but userspace
code; they use genericity, which we haven’t covered yet. But suppose
the span of some list is expressed as a [%hold p q]. Call this noun x.
What span should we expect when we expand x?

A list is either null (the span [%atom %n 0 0]) or a cell ([%cell i
x], where i is the list item span, and x is our original hold). “Either”
means a $fork with a set containing these two spans. So as we trace
into the list, we see x recur.

This is how a finite span can describe an indefinitely long list. Now,
suppose we’re comparing two list spans x and y, to see if they’re com-
patible types? Can we compare these infinite expansions in finite time?
Yes—as we trace into them, we just have to keep a working set of the
comparisons we’re trying to prove, and prune the search tree instead
of looping back into them.

What if we’re tracing through a twig that is “irrational” and doesn’t
repeat its span? Then the compiler goes into an infinite loop. This is
actually a hard mistake to make, and the developer UX is similar to
that of a runtime infinite loop: you press ˆC and get a stack trace.

This design has no trouble with tail recursion. Head recursion re-
quires an explicit cast (which is still verified). Broadly, it’s good practice
to cast the product of any arm.

7.1.4 Pattern matching and branch specialization

The other piece needed to understand Hoon type inference is branch
specialization. Hoon has a pattern-match twig {$fits p q}, emitting a
formula that tests whether the value of q is within the span of p.

A branch with a test which is a $fits, or arbitrary boolean algebra
using $fits, where q is a fragment of the subject, compiles each side
of the branch with a subject specialized to what the branch test has
learned. We use this to specialize unions, then manipulate each special
case directly.

If the compiler detects that one branch is never taken, it’s an er-
ror; this is invaluable when, for example, refactoring a tagged-union
traverse.
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7.2 Type definition
In most languages, types and data structures are the same thing. In
Hoon they are different things. A type is a span; a data structure is a
mold.

There is no Hoon syntax for a span. We don’t declare spans. We infer
them. Why not? There is no span that can’t be defined as the mint of
some twig and subject. So type inference solves type declaration.

We like to constrain the nouns we produce to match regular and
rigorous data structures. We define these data structures with type
inference. But we define them as the ranges of construction functions,
and Hoon has macros specialized for expressing these constructors. A
data constructor, or mold, is easily mistaken for a type declaration in a
more conventional language. For instance, the definition of span above
is a mold.

A mold is omnivorous; the argument to a mold is always $noun.
Molds are also idempotent. If the argument was already in the mold’s
range, the product is the argument; =((mold x) (mold (mold x))). In
other words, a mold normalizes its argument.

Since Hoon is a typed language and it’s bad form to discard type, you
rarely actually call a mold function. Molds are normally only called
to validate untrusted raw nouns from the network. Anywhere else,
“remolding” data shows sloppiness.

We do often bunt a mold: create a default or example noun. Logi-
cally, we bunt by passing the mold its default argument. But normally,
this call can be folded at compile time and generates a constant.

7.3 Syntax
Hoon’s syntax approach is the opposite of Lisp’s. Hoon is full of syntax.
The front end (parser and macro expansion) is almost as complex as
the back end.

To understand Hoon syntax, we need a brief overview of the AST
or twig structure. To simplify slightly, a twig has a head which is a
tag (stem), and a tail (bulb) which is a structure containing more twigs,
most often a tuple of twigs.

The set of these twig stems is fixed. They are all “special forms” in
the Lisp sense. Most (all but 28) are implemented internally as macros,
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but Hoon has no user-level macros.
Each stem has its own bulb syntax. But most follow a pattern called

regular form, which we’ll explain first.

7.3.1 Regular form: sigils and runes

A twig in regular form starts with one of two syntactic choices: a key-
word, which is just the stem with : prefixed; or a rune, an ASCII di-
graph.

For example, the twig form {$if p/twig q/twig r/twig} is written
:if(p q r) in keyword form, and ?:(p q r) in rune form. Experienced
programmers find runes much more readable, partly because the first
glyph of the rune defines a functional category (like ? for conditionals).

Because Hoon uses ASCII symbols so heavily (there is some resem-
blance to Perl or even the APL family, although Hoon is more regular
than both), it presents a serious vocalization problem. To aid in speak-
ing Hoon—both for actual communication, and to assist in subvocal-
ized reading—we have our own one-syllable names for ASCII tokens
(Listing 3).

Listing 3: Phonetic names for symbols.
ace [1 space] gal < pal (
bar | gap [>1 space , nl] par )
bas \ gar > sel [
buc $ hax # sem ;
cab _ hep - ser ]
cen % kel { sig ~
col : ker } soq ’
com , ket ^ tar *
doq " lus + tec ‘
dot . pam & tis =
fas / pat @ wut ?
zap !
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7.3.2 Regular form: tall and flat modes

There are two common syntactic problems in functional languages:
closing terminator piles (e.g., right parens in Lisp) and indentation
creep. A complex function will have a deep AST; if every child node
in that AST is indented past its parent, any interesting code tends to
creep toward the right margin.

To solve terminator piles, there are two forms of every Hoon twig:
“tall” and “flat”, i.e., multiline and single-line. Tall twigs can con-
tain flat twigs, but not vice versa, mimicking the look of “statements”
and “expressions” in an imperative language. Flat form is enclosed by
parentheses and separated by a single space; tall form is separated by
multiple spaces or a newline, and (in most cases) not enclosed at all.
(Note that except to distinguish one space from many, Hoon does not
use significant whitespace.)

The trick is that most twigs have fixed fanout. For example, we
know that {$if p/twig q/twig r/twig}, if-then-else, has three chil-
dren. Since the parser has a custom rule for each twig form, rather
than shared syntax as in Lisp, that rule can parse three children and
then stop. Some twigs are n-ary; tall form has no choice but to indent
each child, and use a terminator ==.

Right-margin creep is prevented by backstep indentation; where a
classical language might write

?: test
then
else

Hoon writes

?: test
then

else

Ideally, the most complex twig is the else; if not, there’s an alternate
form, ?., which reverses q and r.

Backstepping is just the standard pattern, of course, and the pro-
grammer is free to lay out their code in the most readable fashion. The
only actual rule is that single spaces are not sufficient to separate tall-
form twigs.

27



7.3.3 Irregular forms

Fortunately or unfortunately, any twig can also have an irregular form.
For example, (add 2 2) is the irregular form of %+(add 2 2) or
:calt(add 2 2). Irregular forms are always wide, and there’s nothing
to do but learn them.

7.4 Example
Here’s a Hoon version of the classic “FizzBuzz” program using rune
sigils:

=+ count 1
|- ^- (list tape)
?: =(100 count)

~
:_ $(count (add 1 count))
?: =(0 (mod count 15))

"FizzBuzz"
?: =(0 (mod count 5))

"Fizz"
?: =(0 (mod count 3))

"Buzz"
"{<count >}"

Further examples using both rune and keyword syntax can be found
in the Appendix (Section 15).

7.5 Advanced polymorphism
As we noted, the definition of span in Listing 2 is simplified. The full
version is in Listing 4.

If cores never changed, we wouldn’t need polymorphism. Of course,
nouns are immutable and never change, but we can use one as a tem-
plate to construct a new noun.

Suppose we take a core, a cell whose head is a battery (tree of arm
formulas) and whose tail is a payload (any kind of data), and replace its
tail with a different noun. Then, we invoke an arm from the battery.

Is this legal? Does it make sense? Actually, every function call in
Hoon does this, so we’d better make it work well.

28



Listing 4: Full ++span.
++ span $@ $? $noun

$void
== $% {$atom p/term q/(unit atom)}

{$cell p/span q/span}
{$core p/span q/coil}
{$face p/term q/span}
{$fork p/(set span)}
{$hold p/span q/twig}

==
::
++ coil $: p/?( $gold $iron $lead $zinc)

q/span
r/{p/?($~ ^) q/(map term foot)}

==
++ foot $% {$dry p/twig}

{$wet p/twig}
==

The full core stores both payload spans. The span that describes the
payload currently in the core is p. The span that describes the payload
the core was compiled with is q.q.

In the Bertrand Meyer tradition of type theory [9], there are two
forms of polymorphism: variance and genericity. In Hoon this choice is
per arm, which is why our battery went from (map term twig) to (map
term foot) when it went into the coil. A foot is $dry or $wet. A dry
arm uses variance; a wet arm uses genericity.

7.5.1 Dry arms (variance)

For a dry arm, we apply the Liskov substitution principle [6]: we ask,
“can we use any p as if it was a q.q”? This is the same test we apply in
:cast or any type comparison (nest).

Often cores themselves need to be checked for nesting. The seman-
tics of this test are the well-established rules of variance: arguments
are contravariant and write-only, results are covariant and read-only.
To be exact, cores can be invariant ($gold), bivariant ($lead), covariant
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($zinc), or contravariant ($gold).

7.5.2 Wet arms (genericity)

For a wet arm, we ask: suppose this core was actually compiled using p
instead of q.q? Would the Nock formulas we generated for q.q actually
work for a p payload?

If so, we can effectively customize the type signature of the core for
the payload we’re using. Consider a function like turn (Haskell: (flip
map)), which transforms each element of a list. To use turn, we install
a list and a transformation function in a generic core. The span of the
list we produce depends on the span of the list and the span of the
transformation function. But the Nock formulas for transforming each
element of the list will work on any function and any list, so long as the
function’s argument is the list item.

When we call a wet arm, we’re essentially using the twig as a macro.
We are not generating new code for every call site; we are creating a
new type analysis path, which works as if we expanded the callee with
the caller’s context.

Again, will this work? A simple (and not quite right) way to ask this
question is to compile all the twigs in the battery for both a payload of
p and a payload of q.q, and see if they generate exactly the same Nock.
The actual algorithm is a little more interesting, but not much.

(A Haskeller might say that in a sense, q.q and q.r.q (the original
payload and the battery) define a sort of implicit typeclass. And in-
deed, Hoon uses wet arms for the same kinds of problems as Haskell
typeclasses.)

7.5.3 Constant folding

There’s only one field of the coil we haven’t explained yet: p.r.q. This
is simply the compiled battery, if available. (Of course, we compile
the twigs in a core against the core itself, and the formulas can’t be
available while we’re compiling them.) External users of the core want
this battery constant, though: it lets us fold constants by executing
arms at compile time.
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8 Arvo: an event-driven kernel
Arvo is a single-threaded event interpreter. In many ways it resembles
other such event dispatchers, such as node.js. In others it’s more un-
usual. We don’t have space to explore Arvo deeply, but let’s touch on a
few of the design choices.

8.1 Kernel interface
Arvo is the iteratively updated core we created at the end of the larval
stage. The core (Listing 5) has two arms, named (in honor of BASIC)
peek and poke.

Listing 5: The Arvo interface.
++ card {@tas *}
++ path (list @tas)
++ wire path
++ ovum {p/wire q/card}
++ work ovum
++ step {p/@da q/ovum}
++ mark @tas
++ arvo

|%
++ poke

$- nex/step
{act/(list work) _arvo}

::
++ peek

$- pax/path
val/(unit (unit {p/mark q/*}))

--

The poke gate applies the next step. It produces a list of actions and
a new Arvo core.

The peek gate defines a global referentially transparent namespace.
If its product val is ˜ (null), the path pax is mysterious; its value cannot
be determined synchronously. If it produces [˜ ˜], pax is known to be
unbound (and can never become bound). Otherwise, the namespace
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produces a mark (external type label, like a MIME type) and a general
noun.

Steps and actions share the ovum mold, which is a card (an untyped
tagged union case) and a wire (a list of symbols representing a cause).
Effects are routed to the same wire as their cause.

For example, an HTTP request is sent to Arvo with a wire that
uniquely identifies the request socket (keeping in mind that Arvo
doesn’t care if Unix reboots). Arvo must produce a response ovum on
the same wire. It does not parse the wire; it just uses it as an opaque
cause identifier.

8.2 Kernel modules
Arvo is just an event distributor; most Arvo functionality is in a system
of kernel modules or vanes. The kernel proper is about 600 lines of
Hoon.

Arvo loads vanes as source and holds each as a {span noun} cell, or
vase. Dynamic type in Urbit means using the statically typed compiler
on runtime vases. Using vases means we can reload vanes from source,
obviously a necessity.

A vane is a core on the same general pattern as Arvo itself, with
arms that handle events, bind names, etc. To update a vane, we compile
the new source and ask the resulting core to copy the relevant state
from the old core. This pattern is also reused for updating user-level
applications within the %gall vane.

Vanes have “routing addresses” which are single letters; they are
implemented by source files starting with that latter. Vane %a, %ames
handles networking; %b, %behn, timers and initialization; %c, %clay, Git-
style revision control; %d, %dill, consoles; %e, %eyre, HTTP; %f, %ford,
resource assembly; %g, %gall, application control.

8.3 Structured events
Each step that enters Arvo becomes a vane-level event, or move (Listing
6). Moves can cause other moves; one external step becomes a cascade
of moves, processed depth-first as a transaction.

A single-threaded, nonpreemptive event dispatcher, like Node or
Arvo, is analogous to a multithreaded preemptive scheduler. There’s

32



Listing 6: ++move
++ duct (list wire)
++ gang (unit (set ship))
++ mask {p/gang q/gang}
++ leap

$% {$give p/duct q/card}
{$pass p/duct q/wire r/card}

--
++ move {p/mask q/leap}

a duality (in the mathematical sense) between event flow and control
flow. One disadvantage of many event systems is unstructured event
flow, often amounting to “event spaghetti.” The control-flow dual of an
unstructured event system is goto.

The Arvo move system is the dual of a call stack. Wires work as in
the external step event, but a duct is a stack of wires. A $pass move is
a call; a $give move is a return.

To use an event-oriented service, the caller encodes the cause, rea-
son, context or purpose of the request in the $pass wire. When the
service completes, it returns the result on the calling duct. The caller
is passed the return value and the saved wire, which provides context
to the return handler.

Since wires are symbolic, causes have to be encoded as symbols,
which is not ideal for efficiency but is ideal for debugging. A saved duct
becomes the dual of a continuation, but is much more printable than a
continuation. It’s also easily used as a table key, not a common use of
continuations.

It’s straightforward to build a promise system on top of moves, but
it’s not conventional Arvo style. The ideal Arvo application core (wheth-
er vane or user-level app) contains a pure data structure without any
functional state. For example, if the state machine contains promises,
closures, which represent in some sense blocked sequential processes,
upgrading it may be an unnecessarily interesting problem.
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8.4 Security mask
As described above, Arvo is a “single-homed” OS; an instance has one
identity (a ship; see the network architecture starting on page 34) as-
signed at birth. All vane code must be fully trusted by this identity, a
subject leg called our.

But since sandboxed user-level apps are a necessity, and apps can
generate moves, we need a security model assertion for moves. Thus
the mask noun in every move.

A security mask is a cell of two gang nouns, each defining a set of
ships: p or who, and q or whom. The mask states who (other than us)
caused this move (tainted by), and whom (other than us) it is allowed
to affect (leaked to).

Each mask is a unit; if who is ˜, it means that anyone could have
tainted this move (it’s completely untrusted, like an incoming packet);
if whom is ˜, it means that data from it can leak to anyone (it’s public
information). Whereas the empty set, [˜ ˜], means “totally trusted”
and “totally private” respectively.

Normally, a move produces effects with the same mask as its cause.
Only well-defined authentication or sandboxing semantics should vio-
late this default.

9 Ames packet protocol, part 1: principles
We don’t have space to look at every Arvo vane, but let’s take a core
sample of the most important one: the networking vane, %ames. After
all, Urbit is a packet transceiver. If we understand how raw bits on
the wire are authenticated, decrypted, validated, and presented to the
application as typed data structures, we probably understand Urbit.

We’ll follow a specific case of packet networking: a poke, or one-way
transactional RPC, between two user-level apps. This isn’t the only
use case of Ames, but it solves all the important problems of secure
peer-to-peer communication.

Before we explain the bits-on-the-wire protocol, we need to describe
the concepts and assumptions of Urbit networking, which are quite
divergent from the classical TCP/IP stack.
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9.1 Routable identity
An Urbit identity is called a ship. A ship is both a digital identity and
a routing address—imagine an Internet in which DNS and IP were a
single routable identity.

An Urbit interpreter instance (i.e., a unique event history) is also
called a ship. The terms ship (identity) and ship (interpreter instance)
are the same because the ship-to-ship mapping is 1:1; a ship instance
has one unique ship address, set permanently in its larval sequence.
“An urbit” is also used as a synonym for both.

A ship is a 128-bit number. A 128-bit number per se is not a very
useful digital identity. An identity does not need to be human-meaning-
ful, but it does need to be human-memorable.

Ships are printed with the @p aura, a base-256 phonetic encoding
with short formats for size classes. @p divides 128-bit ships into five
length classes: an 8-bit, 1-syllable “galaxy”; a 16-bit, 2-syllable “star”;
a 32-bit, 4-syllable “planet”; a 64-bit, 8-syllable “moon”; a 128-bit, 16-
syllable “comet”.

The intended role of a ship is defined by its length class. Galax-
ies and stars are network infrastructure; planets are personal servers;
moons are clients/appliances; comets are bots.

Planets (for example, ˜dabnec-forfem) are short enough to fit in the
brain’s “human name in a foreign language” slot. They are not mean-
ingful, but assigned meaningless names have their own quality: unlike
either real names or self-selected handles, they’re opaque and imper-
sonal. Not all social interactions on the network are naturally imper-
sonal, but many are. And it’s not hard to layer local nicknames (“pet-
names” [15]) over global impersonal names.

There are enough planets for a healthy global network (the same
number as IPv4), but few enough that they remain scarce. New iden-
tities on a social network should be nontrivial to obtain, to discourage
spam and other Sybil attacks.

Three questions remain: how are ships authenticated? How are
packets between them actually routed? And how are they allocated?
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9.2 Cryptography
A public key in Urbit is called a pass; a private key is called a ring.
Both pass and ring are atoms. They start with a cryptosuite byte for
algorithm update, so we can think of all algorithms as a single meta-
cryptosystem.

An Urbit cryptosystem is stateless and deterministic. It supports
hashing; two public-key models, signed-only and signed-plus-encrypt-
ed; and deterministic symmetric authenticated encryption. To avoid
stateful nonces and entropy, it restricts its users to contexts where du-
plicate plaintexts (which map to duplicate ciphertexts) leak no infor-
mation. Again, packets must be facts and not commands.

The public-key encryption step encrypts a symmetric key, which the
caller (who presumably has entropy) generates, and encrypts the pay-
load with this key. Decryption produces both plaintext and the sym-
metric key, now a shared secret.

The current cryptosuite A (crua) is strange hand-rolled garbage. It
might be secure, but who knows? Its replacement B (crub) is AES in
SIV mode [11], SHA-256, Curve25519 and Ed25519.

9.3 PKI
Any ship is bound to at most one keypair at any time. So the sim-
plest possible registry is logically (map ship (unit pass)). But this is
a snapshot; in Urbit we prefer histories. What we really want is a self-
validating list of the public keys that this ship has used for its entire
lifetime.

This list is an Urbit certificate or will; an item in the list is a deed.
The deed’s index in the list is its life. A deed is an inception date, an
optional expiration date, and a pass (public key), signed by one or more
parent ships.

Who has to sign what deed? In normal succession, each deed is
signed by its predecessor, i.e., previous life of the same ship. Effec-
tively, key revocation is key renewal; the key signs over its power to its
successor. But the rules vary by ship class and, of course, for the initial
or launch deed.

Every ship except a galaxy has a parent which defaults to its low
half bits (or low 8 bits for a 128-bit comet). The parent of most moons
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is a planet; the parent of most planets is a star; the parent of all stars
and all comets is a galaxy.

Any ship except a moon can escape (change parents), but only to
another galaxy or star, respectively, and with its active consent. An
escape deed is a normal succession, but adds the signature of the new
parent.

A comet (128-bit ship) signs its own launch deed. The ship must
equal the hash of the launch pass. Subsequent deeds use normal suc-
cession. Cometary space is decentralized; anyone can create a comet.

A moon (64-bit ship) is launched by its parent. Subsequent deeds
are signed by the parent. Lunar space is totally captive; a moon is the
property of its parent, like a user in a multiuser system.

A planet or star (32-bit or 16-bit ship) is launched by its parent.
Subsequent deeds use normal succession. The planet is the lowest level
of allodial title; it owns itself, like Bitcoin.

A galaxy is launched by self-signing. Subsequent deeds use nor-
mal succession. The hash of the launch pass must match the value in
the galaxy table, which is hardcoded as a magic constant in the Arvo
source. Galaxies are “premined” in the Bitcoin sense.

The will update rule is simple: a will can be updated if and only
if it extends a will already in the registry, or if it updates a parent
signature to a new life. All parent signatures in the update must match
the current local parent life.

Intuitively, a ship that accepts a new deed invalidates the private
keys of all previous deeds to that ship. To make sure your latest deed
is inviolable, and all previous deeds are unusable, broadcast the latest
globally. The details of deed update are in Section 9.5.

9.4 Update, routing, and parental trust
Normally, the child automatically syncs and loads source updates from
the parent. Subscribing to an update server requires almost complete
trust; this problem is not unique to Urbit, however. Also, since we have
paid this price in extending trust, we might as well use this relation-
ship wherever it’s useful.

Routing is an obvious example. Urbit is a P2P network, so fully con-
nected routing on the real internets requires a NAT traversal server.
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This server is the parent. Both STUN and TURN fall out of the for-
warding protocol naturally. To bootstrap, galaxies are DNSed at
$galaxy.urbit.org,

For planets and above, the threat model between parent and child
is that the parent can effectively deny service to the child, but the child
can escape from the parent to another parent of the same class (e.g., a
planet’s parent is some star).

So there is no strong economic motive for the parent to abuse or
starve the child—quite the contrary. A planet which no star is willing
to host must be quite an nasty planet. A star which turns nasty will
lose the planets it’s already issued, and lose capital in the planets it
hasn’t. Everyone has an economic incentive to behave responsibly.

9.5 Deed distribution
In general principle, Byzantine global broadcast of deeds is the same
consensus problem that Bitcoin solves. If eager broadcast were perfect
and trusted, Bitcoin would not need proof-of-work.

But Urbit’s threat model is very different from Bitcoin’s. Bitcoin is
a trust-free system; Urbit has a central trust hierarchy. Spends in Bit-
coin are high-frequency, fungible, and must be low-friction, much like
monetary transactions in real life; ship transfers or rekeys in Urbit are
low-frequency, non-fungible, and can be high-friction, like real-estate
transactions in real life.

One advantage of the real-estate model is that Urbit ships, like real
estate, have far fewer criminal use cases. Existing systems of digital
real estate, such as DNS and IP addresses, tend to be unregulated,
simply because they haven’t caused any problems.

In theory, Urbit distributes deeds along three paths. Only the first
is active right now, because Urbit is a testnet.

9.5.1 Lazy peer update

First: fresh deeds are piggybacked on peer-to-peer packets. A message
sent to a past identity, even a cleartext message when the sender has
no will for the receiver, remains authentic.

Lazy peer update is a backstop to make sure communication is al-
ways possible and resolves to a fully encrypted channel. Alone, it re-
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mains vulnerable if old keys are stolen.

9.5.2 Hierarchical synchronization

Second: fresh deeds are distributed hierarchically with the %clay revi-
sion control system. Parents and children sync a key desk (branch) to
each other. Galaxies sync mutually.

Hierarchical update depends on the integrity of the parent hierar-
chy. If this trust is broken, censorship attacks become possible and
independence is compromised. But this is a minor consequence of a
breach in parent integrity.

9.5.3 Eager gossip with conflict detection

Third: if the parent hierarchy (which, because of the escape mecha-
nism, is designed to be very resilient), somehow becomes compromised,
an eager gossip protocol like Bitcoin’s is needed.

However, this does not imply a proof-of-work requirement. As [5]
suggests, well-connected gossip networks are hard to censor in practice,
and double-spend alerts are effective.

A “double sell” attack on Urbit would involve simultaneously sign-
ing two different successor deeds, and distributing them both on the
gossip network. The double sell works if and only if each alternate
reaches the intended “buyer,” and triggers an irrevocable settlement,
before a conflict notification or the other alternate. This essentially
requires the network to be partitioned, also very unlikely in a gossip
network. In practice, unless buyer and seller have mutual trust, use a
trusted escrow agent.

If all else fails, a new or existing blockchain is an option. But as
presently analyzed, a blockchain for digital real estate on the Urbit
design looks like overkill.

9.6 Permanent networking
Protocol design is much easier with the assumption of uniform persis-
tence. In a protocol designed for uniformly persistent nodes, we can
assume that no node involuntarily loses state. We call this assumption
permanent networking.
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In the classical stack, a basic result of protocol design is that you
can’t have exactly-once message delivery [21]. To put it in the terms
we in Section 3.2: you can’t build a bus on a network. With permanent
networking between solid-state interpreters, this feature is straight-
forward. Why? Because two uniformly persistent nodes can maintain
a permanent session.

When classical nodes reboot, their TCP sockets (session layers)
break, because session state is in RAM. If an HTTP POST has been
sent on a TCP socket but the HTTP response has not yet been received,
and then the socket closes, there is no way for the client to know if the
server applied the POST. When a new socket is opened, the client
can resend (at-least-once delivery) or fail to resend (at-most-once). The
programmer has to understand that the socket is not really a bus, and
make sure the POST is actually an idempotent fact rather than an im-
perative command. (The idempotence problem is often punted to the
human layer: “Please click only once to make your purchase.”)

With uniform persistence, any pair of nodes can maintain a persis-
tent shared sequence number. A message in this permanent session
is both a command and a fact. Bob declares that message number x
in his permanent conversation with Alice is the noun y. If Alice hears
this declaration twice, she learns nothing more than if she heard it
once. Once she acknowledges message x, and Bob hears this acknowl-
edgment, Bob will never share this fact with her again.

One cost of permanent networking is that brain damage is fatal by
default. There is no trivial way to recover or recreate a ship whose ship
has sunk. By losing persistent session numbers, it has lost its ability to
even communicate. Even a “backup” makes no sense; you’ve lost data
or you haven’t.

Another cost of permanent networking is that we add persistence
latency to the network roundtrip time. This is not a problem in theory,
but in practice it is. If we define “persisted” as “stored in RAM on
three machines in separate availability zones,” persistence latency can
be reduced to a few milliseconds for a cloud server: manageable but
nontrivial.

Urbit is designed to run in a data center; it assumes that a high-
reliability, low-latency cloud log is a service we know how to deliver.
On mobile hardware, low-latency NVRAM would be ideal, but mobile
hardware and critical data remain a bad fit.

40



9.7 Permanent applications
There is not just one persistent conversation between Alice and Bob.
Since Arvo is an OS, it’s not one monolithic codebase. Multiple compo-
nents need multiple conversations.

Arvo has two layers of modularity, both permanent: kernel modules
(vanes) and user-level applications (within the %gall vane). An Arvo
“socket” identity in the formal sense contains the names of the commu-
nicating subsystems.

Applications must follow the same permanence rules as ships. Just
as there is no correct way to destroy and then recreate a ship, there
is no correct way to remove and then reinstall an app. You can up-
grade the app to a new codebase, whether from the original developer
or a competitor; but the upgrade adapts the state of the old applica-
tion, continues all its conversations, and remains responsible for its
acknowledgments.

9.8 End-to-end acknowledgment
One problem that often produces unpredictable states in classical net-
work stacks is multiple layers of error and acknowledgment. For in-
stance, consider a simple REST API returning JSON. An error can be
a TCP or TLS socket error, an HTTP result code, or an in-band JSON
application message.

Urbit has two acknowledgment layers: messages and fragments. A
message of arbitrary size is broken into MTU-size fragments. Each
fragment states the sender, message and fragment number, but only
whole messages are authenticated/decrypted.

E2E acknowledgments mean that (a) acknowledging all fragments
in the message implies acknowledging the message, (b) acknowledging
the message implies that the message was correctly processed. Every
packet is a transaction (at the protocol level), but every message is also
a transaction (at the application level). A single ack packet declares
that the fragment was received, the message was decoded, and the re-
cipient accepted it.

As a transactional system, Urbit supports both positive and nega-
tive acknowledgments. A positive acknowledgment carries no data. A
negative acknowledgment carries an error trace. Since duplicate pack-
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ets must generate duplicate acknowledgments, negative acks need to
be saved forever; positive acks can be saved as a counter, with negative
exceptions.

A negative ack always results from either (a) an application crash in
the receiver or (b) a system error report. For example, a user interrupt
or an event timer interrupt (any event not generated by the console,
such as a packet, needs a timer, since there is no one to press ˆC) will
send a negative ack with a stack trace.

One cost of this design: E2E acks complicate congestion control.
The message computation time is in the roundtrip time for message-
completing packets. To help the sender’s heuristics, an ack includes
the measured computation latency. We know of no algorithm which
can use this data, but it can’t hurt.

9.9 Packet rejection
Classical systems drop packets only because of buffer overflows. A
buffer overflow is a great reason to drop a packet, but there are sev-
eral others.

If a message fails authentication, decryption or validation, the pack-
et that completes it must be silently dropped. There are two possible
causes of a weird packet: (a) the sender is deranged or malicious; (b)
the sender is emitting some new protocol that the receiver doesn’t yet
support.

In the case of (a), the drop is a no-brainer. The typical crypto attack
involves a leakage channel in error responses, including but not limited
to timing attacks. Nonresponse to crypto errors does not eliminate the
need for constant-time algorithms—an attacker could find some other
channel, such as another packet or even another ship, that could ex-
tract the timing signal—but there’s certainly no reason to be helpful.

In the case of (b), the drop is also correct. It will cause the sender
to back off exponentially until the receiver updates itself. A typical
cause is a receiver that’s been turned off while network updates were
shipped. A period of unavailability is unavoidable, but no errors should
propagate up to the user (as they would if we sent a negative acknowl-
edgment). Dropping the packet says the wire is cut, as it is.
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10 Ames protocol, part 2: bitstream
Most systems think of binary blobs as bitstreams. Urbit thinks of them
as atoms (large unsigned integers). The difference: an atomic blob has
no non-redundant length field. As a bitstream, its last bit (its high bit
as an atom) is always 1. A bitstream can have trailing zeroes; a MIME
octet-stream or Unix file invertibly represented as a noun is a [length
data] cell.

10.1 jam and cue: noun serialization
Urbit in general and %ames in particular make much use of the jam and
cue serialization system. jam maps any noun to an atom and cue maps
the atom back to a noun, crashing if the encoding is invalid. jam and
cue preserve DAG structure.

The definition of cue’s dependency rub, a frame decoder, appears in
Listing 7, while the cue deserializer itself appears in Listing 8.

This is the first layer of defense against barbaric bits. (The defini-
tion of jam is about the same size.) Its output may still be barbaric,
but (a) it’s at least a barbaric noun, and (b) Hoon is adept at civilizing
barbaric nouns.

For obvious performance reasons, cue and jam are matched with C
jets. This jet code (about 100 lines) is Urbit’s most promising attack
surface.

10.2 rub: prefix expansion
rub extracts a self-measuring atom from an atomic blob.

We suggest (line 1) our jet identity. We accept (line 2) a a cell {a/@
b/@}. a is a bit position which serves as a cursor into an atomic blob,
b. We produce (3) a {p/@ q/@}; p is the number of bits to advance the
cursor and q is the encoded atom.

We pin (4) c, a unary sequence of 1 bits followed by a 0 bit. If (10) c
is 0, (11) p is 1 and q is 0. Otherwise, c is the number of bits needed to
express the number of bits in q.

We advance (12) the cursor, a, to include c and the terminator bit.
We pin (13) e, the number of bits in q. This is encoded as a c-1-

length sequence of bits following a, which is added to 2c−1. p (number of
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Listing 7: ++rub
++ rub

1 ~/ %rub
2 |= {a/@ b/@}
3 ^- {p/@ q/@}
4 =+ ^= c
5 =+ c=0
6 |- ^- @
7 ?. =(0 (cut 0 [(add a c) 1] b))
8 c
9 $(c +(c))

10 ?: =(0 c)
11 [1 0]
12 =. a (add a +(c))
13 =+ ^= e
14 %+ add
15 (bex (dec c))
16 (cut 0 [a (dec c)] b)
17 :- (add (add c c) e)
18 (cut 0 [(add a (dec c)) e] b)]
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Listing 8: ++cue
++ cue

1 ~/ %cue
2 |= b/@
3 ^- *
4 =+ a=0
5 =| m/(map @ *)
6 =< q
7 |- ^- {p/@ q/* r/(map @ *)}
8 ?: =(0 (cut 0 [a 1] b))
9 =+ e=(rub +(a) b)

10 [+(p.e) q.e (~(put by m) a q.e)]
11 =+ d (add a 2)
12 ?: =(1 (cut 0 [+(a) 1] b))
13 =+ e=(rub d b)
14 [(add 2 p.e) (~(got by m) q.e) m]
15 =+ u=$(a d)
16 =+ v=$(a (add p.u +(a)), m r.u)
17 =+ w=[q.u q.v]
18 :+ (add 2 (add p.u p.v))
19 w
20 (~(put by r.v) a w)
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bits consumed) is c + c + e (17). q (the packaged atom) is the e-length
bitfield at a + c + c (18).

10.3 cue: noun expansion
cue decodes an arbitrary noun from an atomic blob.

We suggest (1) our jet identity. We accept (2) an atomic blob b. We
produce (3) a general noun.

We pin (4) a, a cursor position running from low to high, at 0; and
(5) an empty map m, from cursor to noun. We’ll save all cursor-to-noun
mappings in this cache m.

We then enter a loop (7) which produces a triple {p q r}, where p
is the following cursor position, q is the noun, and r is the cache. Our
product (6) is q.

If (8) the first bit at a is 0, the noun is a direct atom. We pin (9) e,
the expansion of the second bit at a. p (10) is the cursor after e, q is the
atom from e, r is an updated cache.

We pin (11) a data cursor d, the third bit at a. If (12) the second bit
at a is 1, this noun is a saved reference. We rub (13) d, producing an
atom expansion e, whose atom is a cursor. p (14) is the length of e, plus
the two meta bits; q is the cursor’s value in the cache, crashing if not
found; r is the current cache m.

So the noun is a cell. We pin (15) u, decoding the noun at d, the head.
We pin (16) v, decoding the cursor after u, using the cache produced by
u. We pin (17) w, the cell of q.u and q.v. p (18) is the lengths of u and v,
plus 2. q (19) is w. r (20) is the cache, with w inserted.

10.4 Packet structure
jam encoding is not actually used for the outermost layer of a packet.
jam has the same relationship to custom bit stuffing that an FPGA has
to custom silicon. The packet encoding of the %ames protocol is custom;
but the first thing we make from a packet is a jam blob. It’s just easier.

We can still express the structure we’re producing as a noun.
We’re decoding the packet as a cake (Listing 9), which is a triple of

sock (a pair of sender and receiver ships), a skin (one of four encodings),
and an encoded blob. The decoder is bite (Listing 10).
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Listing 9: ++cake
++ cake {p/sock q/skin r/@}
++ skin ?(% none %open %fast %full)
++ skit ?(%0 %1 %2 %3)
++ sock {p/@p q/@p}

Listing 10: ++bite
++ bite

|= pac/@
^- cake
=+ [mag=(end 5 1 pac) bod=(rsh 5 1 pac)]
=+ :* vez=(end 0 3 mag)

chk=(cut 0 [3 20] mag)
wix=(bex +(( cut 0 [23 2] mag)))
vix=(bex +(( cut 0 [25 2] mag)))
tay=(cut 0 [27 2] mag)

==
?> =(7 vez)
?> =(chk (end 0 20 (mug bod)))
:+ [(end 3 wix bod) (cut 3 [wix vix] bod)]

(kins tay)
(rsh 3 (add wix vix) bod)

::
++ kins

|= tay/@
(snag tay ‘(list skin) ‘[%none %open %fast %full ~]))
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The format: a 32-bit header word, then the sender ship, then the re-
ceiver ship, then the payload. The header: 3 bits for a protocol version
(currently 7); a 20-bit checksum; 2 bits each for the length of sender
and receiver ship, in bytes; 2 bits for a skin code; and the last 3 bits
reserved.

The 2-bit skin code (skit) matches 0 through 3 with %none (no
crypto), %open (signed but not encrypted), %full (public-key signed and
encrypted), and %fast (symmetric authenticated encryption).

10.5 Meal decoding
Our next goal is to decode our packet data into a meal (Listing 11).

If the encoding is $none, we just cue the packet data and mold it as a
meal. $none is only valid for $part and $fore packets. (For a fragmented
message, crypto is at the message level.)

If the encoding is $fast, the first 128 bits of the message are the
hash of the symmetric key. If we hold this key, we use it to decrypt
the rest of the packet and cue it as a meal. Otherwise we drop the
packet. (Apparent connectivity loss makes the sender fall back to $full
encoding.)

If the encoding is $open, the packet is signed but not encrypted (be-
cause the sender has no public or symmetric keys for the receiver). We
cue the data as a cell {p/will q/@}, a certificate and a payload. The
payload is signed with the key of the newest deed in will p. The ver-
ification function in the cryptosuite checks this signed payload q and
spits back out another atom,

If the encoding is $full, the packet is signed and public-key en-
crypted. We cue the data as a triple {p/life q/will r/@}. This is the
payload of $open, plus a life that tells us which deed in our own will
the packet is encrypted to. (A sender may have an outdated will, which
is still better than nothing).

A $full packet, if addressed to our current life, also contains a valid
shared secret. Packets encoded with this secret can be sent as $fast to
the sender.

Every ship tracks the set of other ships it has shared its will with;
it sends with $open or $full when it is not sure the receiver has the
latest will. We don’t send the full will, just the suffix diff. If a will
update fails, obviously, the packet is dropped.
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Listing 11: ++meal
++ bone @ud :: connection number
++ hork (unit (pair term tang)) :: error report
++ nose (pair bone tick) :: message identity
++ tick @ud :: message number
++ flap @uv :: 128-bit packet hash
++ lane :: packet address

$% {$if p/@ud q/@if} :: udp4: port and IPv4
{$is p/@ud q/@is} :: udp6: port and IPv6

==
++ mile :: compound message

$: p/nose :: message identity
q/skit :: skin of whole
r/@ud :: number of fragments

==
++ frag :: fragment detail

$: p/@ud :: fragment number
q/@ :: fragment data

==
++ bark :: acknowledgment

$: p/bone :: connection number
q/flap :: packet hash
r/(unit hork) :: success/error
s/@dr :: compute time

==
++ meal

$% {$back p/bark} :: acknowledgment
{$bond p/nose q/path r/*} :: message
{$part p/mile q/frag} :: fragment
{$fore p/(unit lane) q/@} :: forwarded packet

==
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If the sender has no receiver will, the general flow of a conversation
is to send the first message with an $open encoding, i.e., signed but
not encrypted. This will trigger a $full ack, whose symmetric key the
sender saves as a shared secret, establishing the secure session from
initial sender to initial receiver. To finish the key exchange, the sender
will respond with a dummy ack, also $full, also containing a shared
secret.

This design eliminates crypto-specific roundtrips at the cost of a
leak. The leak is motivated by the observation that your first words to
a stranger are seldom a secret.

10.6 Meal processing
A $bond meal is a completed message ready to pass to the next level up.

The first field in a $bond is a nose, a message identity. This is a mes-
sage sequence number or tick, relative to an outbound session identity
or bone. To an application, a bone is best compared to a Unix socket fd;
in Arvo terms, it’s an opaque encoding of the duct (cause stack) of the
sending event; in protocol terms it’s a half-duplex stream selector (in-
coming bones are not related to outcoming bones).

The message content is a general noun r, routed to an internal
path q. We have solved the problem of delivering a noun to a higher
level of Arvo.

A $part meal is a fragment of a larger superpacket. All fragments
must agree on the full details of the superpacket, which must expand to
a $bond. Generally a part is sent with $none encoding (no encryption).

A $back meal is a positive or negative acknowledgment, depending
on its (unit hork). Acknowledgments are packet level and end-to-end;
the packet that completes a $bond is not acknowledged until the mes-
sage is fully processed, and contains a negative ack if message process-
ing failed. This message-level transaction acknowledgment falls back
into Arvo on the sender’s side.

For example, if the message pokes an application, and that appli-
cation’s poke arm crashed, the negative ack contains the crash report
with stack trace. We don’t know that the client user wants to see this,
but we don’t know that she doesn’t.

Ack handling in general follows the first law of acknowledgments,
which is: always ack a dup, never ack an ack. (We do sometimes ack an
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ack to move along a key exchange.) In particular, the set of all negative
acks must be saved indefinitely; a duplicate packet must produce a
duplicate ack.

A $fore meal is a forwarded packet. Along with the packet itself
(with its end-to-end sender and destination unencrypted in the packet
envelope), we have a (unit lane) which indicates the UDP address
that the first forwarding server received it from.

Either the packet sender has full cone NAT, or not. If so, the UDP
address reported by the forwarding service will work for any sender; if
we respond directly to that UDP address, and the packet goes through,
the sender will get our direct UDP address. In this case we’ve accom-
plished a STUN-style holepunch.

But we don’t know that this will work. When we have an indirect or
inactive UDP address for a ship, we send duplicate packets: one direct,
one through the forwarding hierarchy. Only when we receive a direct
packet do we stop doing this. So until STUN works, we do TURN—at
the cost of some wasted packets.

The proper way to forward a packet is to send it to the nearest child
if you’re an ancestor of the target, to your parent if not. The peer leg
of the path is at the galaxy level by default, but stars or anyone can
short-circuit.

10.7 Poke processing
Again, from a $bond we get a path and a noun. The prefix of the path
defines an Arvo vane, e.g., %g for the app system %gall. For a poke, the
path is [%g app %poke ˜], where app is an application name (e.g., the
shell dojo).

The noun will be a cell {p/mark q/data}. A mark is a term (symbol)
which is the Urbit equivalent of a MIME type, if MIME types were
names of typed validation functions. The mark is mapped into a %clay
search path, in the same desk (%clay’s equivalent of a branch) as the
application.

This path leads to a Hoon source file containing a core that defines
a variety of functions on nouns in the mark, such as diffs and format
translations. The simplest such function is a mold for validation.

Like a MIME type, the mark is just a label. There is no way to
guarantee that the sender and receiver agree on what this label means.
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A noun which doesn’t normalize to itself is a packet drop. (We could use
molds to implement the Postelian behavior of repairing corrupt input,
but this is bad policy in a typed networking environment.)

Otherwise, we have a typed noun. For a mark foo, this becomes the
sample to a poke-foo gate in the app core. There is no endpoint name
separate from the mark name; in a sense, there is one poke endpoint
overloaded by mark.

If this call doesn’t crash, the message is acknowledged by default.
But the product of the application’s poke gate is a list of Arvo moves.
One move the application can make is a %wait gift that tells %ames to de-
lay the acknowledgment. A further gift reports final completion (or fail-
ure). An application can therefore delegate the transaction to another
service, which is always dangerous but sometimes necessary. In the
meantime, the end-to-end packet ack will be withheld and the sender
will back off.

11 System status and roadmap
Urbit works and self-hosts. The full, running stack, with compiler,
standard library, vanes, and distributed messaging and shell applica-
tions with both console and Web interfaces, is about 30,000 lines of
code. This is probably too big, since Hoon (like most functional lan-
guages) is quite compact and expressive.

Some components remain alpha-grade, some are not quite up to
spec. The boot sequence as implemented is not as defined; security
masks are not implemented at all; etc. Most system updates at all lev-
els (Hoon, Arvo, apps) are propagated over the network, but sometimes
we still reboot the universe (declare a flag day, or “continuity breach”)
for a particularly gnarly one. The event log is not at all above suspi-
cion. Documentation is particularly weak. Performance is usable, but
hardly impressive. So Urbit is not yet production code, but nor is it
absurdly far away.

The Urbit repository is at www.github.com/urbit/urbit. The web-
site (hosted by Urbit) is at www.urbit.org.
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12 Inadequate summary of related work
Many historical OSes and interpreters have approached the SSI ideal,
but fail on persistence, determinism, or both. In the OS department,
the classic single-level store is the IBM AS/400 [18]. NewtonOS [19]
was a shipping product with language-level persistence. Many image-
oriented interpreters (e.g., Lisps [20] and Smalltalks) are also SSI-ish,
but usually not transactional or deterministic. And of course, many
databases are transactional and deterministic, but their lifecycle func-
tion is not a general-purpose interpreter.

13 Conclusion
Urbit is cool and you should check it out.

14 Acknowledgments
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15 Appendix
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Sieve of Eratosthenes in keyword syntax.
:gate thru/atom
:cast (list atom)
:var field/(set atom) (silt (gulf 2 thru))
:rap abet:main
:core
++ abet

(sort (~(tap in field) ~) lth)
::
++ main

:var factor/atom 2
:loop :like ..main
:if (gth (mul factor factor) thru)

..main
:moar(factor +( factor), ..main (reap factor))

::
++ reap

:gate factor/atom
:var count/atom (mul 2 factor)
:loop :like ..reap
:if (gth count thru)

..reap
:moar

count (add count factor)
field (~(del in field) count)

==
--
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Sieve of Eratosthenes in rune syntax.
|= top/@
^- (list @)
=+ fed=(silt (gulf 2 top))
=< abet:main
|%
++ abet (sort (~(tap in fed)) lth)
++ main

=+ fac=2
|- ^+ ..main
?: (gth (mul fac fac) top)

..main
$(fac +(fac), ..main (reap fac))

::
++ reap

|= fac/atom
=+ cot=(mul 2 fac)
|- ^+ ..reap
?: (gth cot top)

..reap
$(cot (add cot fac), fed (~( del in fed) cot))

--
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